
Introduction to graph-oriented programming

The role of graph transformations in solving the technical debt problem

Olivier Rey

June 26 2018

GraphApps for STAF/ICGT 2018

Table of contents

1. Technical debt in enterprise software

2. Graph-oriented programming: Structural aspects

3. Graph-oriented programming: Dynamic aspects

4. Managing evolutions

5. Implementation aspects

6. High level overview of GraphApps tools

7. Conclusion

STAF/ICGT 2018 Introduction to graph-oriented programming – 2/43

Technical debt in enterprise

software

The famous technical debt

Since decades, the software

engineering world knows this

exponential function: The cost

of the function point, in a

software, tends quickly to

infinity with time

Proposed definition of the technical debt

The difference between the cost of implementation of a software module M, developed alone,

and the costs of development of the same module M developed in the context of an existing

software E, all costs included (testing and data migration for instance)

STAF/ICGT 2018 Introduction to graph-oriented programming – Technical debt in enterprise software 4/43

Couplings in enterprise software

The way the software industry currently builds the enterprise software generates a lot of

”couplings”

• Inside the code

• Inside the data

• Between the code and the data

We divided those couplings into two categories:

• Structural couplings

• Temporal couplings

We will explore briefly both of them in the context of object-oriented programming and RDBMS

STAF/ICGT 2018 Introduction to graph-oriented programming – Technical debt in enterprise software 5/43

First category: Structural couplings

The ”encoding” of the

semantic knowledge is

largely sub-optimal

• In the code

• In the data

The result is a double

coupling for the very

common (0..n) relationship

STAF/ICGT 2018 Introduction to graph-oriented programming – Technical debt in enterprise software 6/43

No unique way of representing things

Common software practices generate

structural couplings whereas there is no

unique way of representing things, and

so, our representation may have to

change with time

On the right: 3 ways of representing the same

reality in a classic client/server exchange

STAF/ICGT 2018 Introduction to graph-oriented programming – Technical debt in enterprise software 7/43

There are always many scope changes

Scope changes

• Cannot really be

anticipated

• Are more or less

difficult to

accommodate in an

existing software

STAF/ICGT 2018 Introduction to graph-oriented programming – Technical debt in enterprise software 8/43

Second category: Temporal couplings

Temporal couplings result from

the very common way of doing

software evolution

• Upgrade an existing code

(BR version m+1

“contains” BR version m)

• Upgrade the database

(version k+1) to fit the

new version of BR (m+1)

• Migrate old data to the

new format (semantic

data version n)

The current code embeds hidden past business rules that apply to past data attached to hidden

data structured encoded in the last version of data structures
STAF/ICGT 2018 Introduction to graph-oriented programming – Technical debt in enterprise software 9/43

Addressing the technical debt

For decades, the software industry found “work-arounds” to address the technical debt

problem, without really questioning the true nature of the technical debt

• The object-oriented design patterns

• Promise: being able to anticipate extensibility and reusability

• Reality: it is not really possible to anticipate extensibility

• Software architecture

• Promise: software component reuse, separation of concerns, dependency minimization, etc.

• Reality: good for technical bricks but does not solve business code technical debt

• Refactoring methods

• Promise: being able to make the software evolve longer

• Reality: costly, risky, a posteriori approach

STAF/ICGT 2018 Introduction to graph-oriented programming – Technical debt in enterprise software 10/43

Graph-oriented programming:

Structural aspects

Node types and relationships types

If we suppose we have two kinds of

artifacts, node types and relationship types

(that become a first class citizen), the

object-oriented approach can be “extended”

Important points:

• Node and relationship types have

attributes

• Relationships are named

• Node types do not “embed” the

relationship knowledge, i.e. they do not

know the graph topology

STAF/ICGT 2018 Introduction to graph-oriented programming – Graph-oriented programming: Structural aspects 12/43

Grouping artifacts per semantic domain

We can group artifacts per

semantic domains. This

practice will be very useful

in the software, as we will

see it.

This exhibits the role of

certain inter-domain

relationship types that can

appear as creating domain

dependencies

STAF/ICGT 2018 Introduction to graph-oriented programming – Graph-oriented programming: Structural aspects 13/43

Graph-oriented programming:

Dynamic aspects

Business rules implementation in object-oriented programming

In object-oriented

programming, business

rules often originate in a

class and are spread among

several other classes

In this example,

BusinessRule3 is spread

among 3 classes and the

part located in class A

knows the graph topology

and B and C methods

STAF/ICGT 2018 Introduction to graph-oriented programming – Graph-oriented programming: Dynamic aspects 15/43

Removing topology dependency with a functional approach on the subgraph

In the bottom figure, we implemented

BusinessRule3 differently

• We created an external function F

that only calls node types methods

which knowledge is limited to their

very node

• F knows how to navigate the graph

through CONTAINS1 and

CONTAINS2 relationships

• In a way, F orchestrates the graph

to implement BusinessRule3

Considering F can alter the graph, F is a

graph transformation

STAF/ICGT 2018 Introduction to graph-oriented programming – Graph-oriented programming: Dynamic aspects 16/43

Nodes, graph and sub-graphs

The domain of the graph transformation is the origin subgraph

STAF/ICGT 2018 Introduction to graph-oriented programming – Graph-oriented programming: Dynamic aspects 17/43

Structure of a graph transformation

A graph transformation should be defined in 3 steps

1. The first step is to check applicability conditions,

in particular, the topology of the provided

sub-graph

• This is crucial because the graph transformation

should only the strict topology required for its

treatment

• In case the applicability conditions are not met,

the graph transformation should declare itself

NOT-APPLICABLE

2. The business logic will manipulate the graph with

or without side-effects

3. The last part of the treatment should be to

rewire the nodes of the subgraph if need be

STAF/ICGT 2018 Introduction to graph-oriented programming – Graph-oriented programming: Dynamic aspects 18/43

About graph transformations

Graph transformations are defined for all subgraphs of the full graph and can have a unified

API

• For g ∈ sub(G),F : g → F (g) is a subgraph of the transformed graph G or

F (g) = NOT-APPLICABLE

• Graph transformations are always invokable

• This property is very important in a maintenance and evolution perspective

Graph transformations can be composed, which enables a certain level of reusability

• Let F1 and F2 be graph transformations, F1 ◦F2 and F1 ◦F2 are valid graph transformations

STAF/ICGT 2018 Introduction to graph-oriented programming – Graph-oriented programming: Dynamic aspects 19/43

A (just a bit) new programming paradigm

If we consider the

graph as being a new

kind of “object”, graph

transformations appear

as the “methods of the

graph”

In a functional

programming

perspective, graph

transformations are a

special functions

applicable to graphs

STAF/ICGT 2018 Introduction to graph-oriented programming – Graph-oriented programming: Dynamic aspects 20/43

Managing evolutions

Maintenance and evolutions in enterprise software

Despite the fact that most of the R&D efforts are focused on new projects and new technology,

most of the IT budgets worldwide are spent in the maintenance and evolution phase

• Average figures that we can find in the industry states that the maintenance and evolution

phase costs around 75% of the overall project for around 25% for the project phase

So software evolution costs are not “just a pain point” in software engineering, they indeed are

the major problem of the industry

We will analyze how the use of graph-oriented programming can change the perspective

• For the structural couplings

• For the temporal couplings

STAF/ICGT 2018 Introduction to graph-oriented programming – Managing evolutions 22/43

Structural evolutions

Modifications in graph-oriented programming impact only what should be impacted

Programming model OOP Graph-oriented programming

Evolutions of semantic

model (concepts and links)

inside the code

The impacts are generally

important if the structure of the

model evolves. It requires code

refactoring, and quite often full non

regression testing on top of the

evolution testing

The modified node and relationship

type have to be retested. However,

if new classes and new relationships

are added, there is no need to retest

the unmodified artifacts (here comes

the importance of the domains)

Evolutions of semantic

model (concepts and links)

inside the database

Database refactoring, data

migration and data retesting must

generally be done

Only the touched entities must be

modified. In some database, when

there is no schema, there is nothing

to do at all

STAF/ICGT 2018 Introduction to graph-oriented programming – Managing evolutions 23/43

Dynamic evolution implying a topological change

We take the case of the evolution of a business rule encoded as a graph transformation

Rule 1: If the topological applicability conditions change, then the graph transformation

should be forked

• In other terms, an evolution of topological conditions creates a new rule that cannot be

considered as an “evolution” of the previous rule

• Once the modification is done, the system contains two active graph transformation with

two different applicability conditions (probably on separate sets of data)

• Note: changing attributes in node or relationship types is a topological change

STAF/ICGT 2018 Introduction to graph-oriented programming – Managing evolutions 24/43

Dynamic evolution not implying a topological change

In that case, no structure change in the database but the business rule evolves

Rule 2: If all data in the database are submitted to the new version of the business

rule, the graph transformation should be modified

If not, it depends

• The graph transformation can manage several cases

• It can be decided to fork the graph transformation if, for instance, the nature of the rule

really changed and/or the new rule clearly applies from a certain moment on newly

created nodes and relationships

In that case, there are still design choices to make!

STAF/ICGT 2018 Introduction to graph-oriented programming – Managing evolutions 25/43

Dynamic evolution rules forecast a new kind of software and patterns

STAF/ICGT 2018 Introduction to graph-oriented programming – Managing evolutions 26/43

Graph-oriented programmings solves superfluous structural couplings

Graph transformations appear as the smallest code entity that encapsulate (at least) the

topological knowledge associated to a business rule

Programming model OOP Graph-oriented programming

Code level superfluous

structural couplings

–Inside aggregations

–Inside methods

–None at the node and relation-

ship type levels (independence of ar-

tifacts the ones from the others)

–Strictly necessary at the graph transfor-

mation level (minimal topology knowledge

restricted to the business rule itself)

Database level superfluous

structural couplings

Inside the RDBMS None in an attributed directed graph database

STAF/ICGT 2018 Introduction to graph-oriented programming – Managing evolutions 27/43

Graph-oriented programmings solves superfluous temporal couplings

Graph transformations “fork evolution approach” appears to enable “timelining” the

application:

• Timelining data but also timelining data structures and enable to keep data in the original

structure (if relevant)

• Timelining business rules and enable graph transformation time sensitivity, protected by

the “always invokable” graph transformation principle

• Restricting dependencies to their necessary semantic core and not allow implementation of

data storage concerns generate superfluous couplings that will result into a divergent

generation of technical debt

• Enable new patterns to emerge and new design best practices in a world where, most of

the time, refactoring, non regression testing and data migration is no more required

STAF/ICGT 2018 Introduction to graph-oriented programming – Managing evolutions 28/43

Implementation aspects

Minimum set of requirements for a graph-oriented implementation

Requirement Sample in OO language Sample in functional language

Node type programming

representation

Class List/struct with typed members

Relationship type program-

ming representation

Class with a source node ID attribute

and a target node ID attribute

List/struct with typed members with

two members for the source and tar-

get node IDs

Graph programming repre-

sentation

There must be a class Graph en-

abling graph manipulation.

There must be a structure represent-

ing the graph and enabling graph

manipulation.

Graph manipulation API Methods on the Graph class Functions acting on the graph struc-

ture

Graph-oriented programming can be implemented in existing programming languages

STAF/ICGT 2018 Introduction to graph-oriented programming – Implementation aspects 30/43

Minimum set of requirements for a graph manipulation API

The graph transformation must use a graph manipulation library to work on the graph itself

Category Requirement Description

01 Basic Create graph from select query

02 Basic Get graph root node (when applicable)

03 Basic Add nodes and relationships inside the graph

04 Basic Delete a node or a relationship inside the graph

05 Basic Modify a node or a relationship inside the graph

06 Basic Get nodes and relationships from the graph to access them in a object-oriented or functional way

07 Advanced Assert a topology condition on the graph (returning true or false)

08 Advanced Search for nodes and relationships with some criteria (such as per attribute value)

09 Advanced Merge two different graphs

10 Advanced Persist the graph

11 Advanced Match a pattern in the graph

12 Advanced Perform some other complex operations on graphs (for instance, for two graphs G1 and G2, create the

graph G3 = G1 ∩ G2)

More

STAF/ICGT 2018 Introduction to graph-oriented programming – Implementation aspects 31/43

High level overview of

GraphApps tools

GraphApps designer, code generators and web framework

1. GraphApps designer

• Based on Eclipse

• Define a meta model that enables to work on a certain semantic domain

• Artifacts are tagged in order to enrich the code generation

• Conceptually, GraphApps designer enables to model complex businesses in a multi-view

environment at a structural level (not instance-based programming)

2. Code generators

• Take in input the designer model plus other configuration parameters and generate a web

framework “plugin” per semantic domain

• The code generator enable to use the glue-ing mechanism of the web framework to limit the

plugin dependencies

3. GraphApps web framework

• Complete multi-layer web framework proposing a graph-oriented framework approach and

using completely the “non-adhesive” properties of “plugins” and “modules” More

STAF/ICGT 2018 Introduction to graph-oriented programming – High level overview of GraphApps tools 33/43

GraphApps Designer

• The Designer proposes a very

simple metamodel

• The Designer frame is composed

of various sections

• The modeling is performed at a

structural level (similar to UML

class diagrams) and at an instance

level (similar to UML

collaboration/sequence diagrams)

• Many views can reference the

same artifacts (enabling

cross-check)

• The “graph view” enables to work

with the full graph model (union

of all views)

STAF/ICGT 2018 Introduction to graph-oriented programming – High level overview of GraphApps tools 34/43

GraphApps Framework Screenshot

The GraphApps Framework (showed here with no

CSS) proposes many features including:

• Alternate navigations

• Reusable components for user defined

management (Dossiers, Labels and To-do

lists)

• Attachments (that can be multi-referenced)

• Geolocation

• History

• Custom navigation between business concepts

• User security

• Optional graph navigation

• Graph manipulation toolkit

• Etc.

STAF/ICGT 2018 Introduction to graph-oriented programming – High level overview of GraphApps tools 35/43

Plugins, modules and semantic domains

The framework manages navigation and knows the “root node” of

every web page

The framework works with extensions of its core model

• Internal services can be added and available on every web page

(for instance through the toolbar)

• They can act on the root node and decorate it without

interfering with the framework behavior or the application

behavior

• Applications are loaded by the framework under the form of a

plugin

• Each plugin can customize its full UI environment

• By respecting the contract of the framework, the plugin is

glued in the framework, alongside with other plugins

• In case of change, many elements won’t have to be non

regressed because they have no dependency between each other

STAF/ICGT 2018 Introduction to graph-oriented programming – High level overview of GraphApps tools 36/43

Sample of framework module and plugins per semantic domain

STAF/ICGT 2018 Introduction to graph-oriented programming – High level overview of GraphApps tools 37/43

Framework high level architecture

• In blue: the framework main

components

• In green: framework modules

and security plugin

• Only top layer packages

are shown

• In yellow: application code

and configuration files

STAF/ICGT 2018 Introduction to graph-oriented programming – High level overview of GraphApps tools 38/43

Conclusion

Application domain for GraphApps tools

GraphApps tools were designed with 3 requirements of unusual applications in mind

Application Complexity

Complex container transport sales and logistic system –Dossiers containing heterogeneous business objects

–Advanced versioning of quotation system

–Multiple points of view of the same business object

Complex public tax collection system on enterprises –Enterprises are very complex business objects (graphs)

–Corpus of thousands of business rules, some of them being “in

competition”

–Business rules apply or not on enterprises depending on patterns

on enterprise structure

Timelined business rules (regulatory)

Aerospace maintenance information system (MIS) –Very complex “business object” (A/C configuration)

–A/C templating mechanism

–Timeline-oriented maintenance with versions of manuals and

procedures

STAF/ICGT 2018 Introduction to graph-oriented programming – Conclusion 40/43

Applicability of graph-oriented programming

Some aerospace management

applications domains were

prototyped (MIS, SMS)

The kind of software that

have between 1 and 3 of

those features can be

realized in OOP/RDBMS

but with much pain and with

design choices that will make

important business evolutions

very hard and costly

Indeed many systems could

benefit from GOP

(Financials, CRM, ERP,

PLM, etc.)

STAF/ICGT 2018 Introduction to graph-oriented programming – Conclusion 41/43

Demo

STAF/ICGT 2018 Introduction to graph-oriented programming – Conclusion 42/43

Questions?

STAF/ICGT 2018 Introduction to graph-oriented programming – Conclusion 43/43

About

About the authors

Olivier Rey – rey.olivier@gmail.com – orey.github.io

• +20 years of experience in software companies and IT service companies involved in

complex software projects

• +10 years as a senior enterprise architect using graph-oriented modeling (Archimate)

• +10 years as a program director in complex projects

• Creator of the graph-oriented programming approach

• Expertise in high end distributed transactional system and middleware

Alexandre Ricciardi – alexandre.ricciardi@gmail.com

• +15 years of experience in software companies and IT service companies

• Various experiences in enterprise creation, scientific calculation, 3D programming, and a

lot in professional business applications in a recurring innovation context

https://fr.linkedin.com/in/reyolivier
rey.olivier@gmail.com
https://orey.github.io/
https://www.linkedin.com/in/alexandre-ricciardi-5a789611/
alexandre.ricciardi@gmail.com

STAF/ICGT 2018 – Toulouse

Backup slides

Graph traversals: benefits and dangers

Object-oriented programming with a graph

database can generate a massive amount of

technical debt

If A is coded in OOP, to reach F, we could

write:

F = A.dest(B).dest(C).origin(D).

dest(E).origin(F)

generating a lot of technical debt

With a graph transformation using a graph

library, this knowledge is in a graph

transformation, any change to this graph will,

in the worst case, make F1 NOT-APPLICABLE

Back

GraphApps full product suite

Back

	Technical debt in enterprise software
	Graph-oriented programming: Structural aspects
	Graph-oriented programming: Dynamic aspects
	Managing evolutions
	Implementation aspects
	High level overview of GraphApps tools
	Conclusion
	Appendix

