Modular Termination of Graph Transformation¹

Detlef Plump

University of York, UK

¹In Graph Transformation, Specifications, and Nets: In Memory of Hartmut Ehrig. LNCS 10800, Springer, 2018

Termination

Impossibility of any infinite sequence

$$G_0 \Rightarrow_{\mathcal{R}} G_1 \Rightarrow_{\mathcal{R}} G_2 \Rightarrow_{\mathcal{R}} \ldots$$

given a set ${\mathcal R}$ of DPO graph transformation rules

Guarantees that the non-deterministic strategy

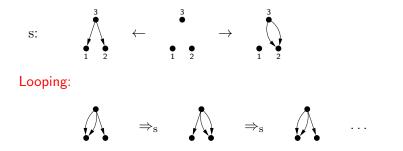
apply rules as long as possible

returns a result on all graphs

- Corresponds to program termination in conventional programming languages: program halts on all inputs
- Undecidable in general

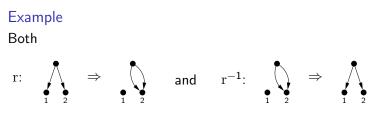
One-rule examples (assuming injective matching)

Terminating: Every step $G \Rightarrow_r H$ reduces the number of nodes whose out-edges have different targets.



Modularity of termination

Observation The union of terminating rule sets need not be terminating.



are terminating but $\{r,\,r^{-1}\}$ is looping

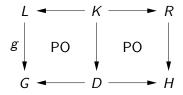
A machine-checkable condition on rule sets such that termination of \mathcal{R} and \mathcal{S} implies termination of $\mathcal{R} \cup \mathcal{S}$.

Hypergraph transformation

- Directed hypergraphs with node and edge labels.
- ▶ Rules $r: \langle L \leftarrow K \rightarrow R \rangle$ consist of two hypergraph morphisms, where $L \leftarrow K$ is an inclusion.

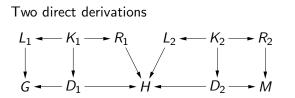
Special case: *injective* rules where $K \rightarrow R$ is injective.

Direct derivations G ⇒_{r,g} H are double-pushouts with injective match g: L → G:



Hypergraph transformation systems (Σ, R) consist of a signature Σ and a finite set R of rules over Σ.

Sequential independence



are sequentially independent if there are $R_1 \rightarrow D_2$, $L_2 \rightarrow D_1$ s.t.

1. $R_1 \rightarrow H = R_1 \rightarrow D_2 \rightarrow H$ and $L_2 \rightarrow H = L_2 \rightarrow D_1 \rightarrow H$

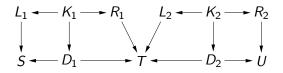
2.
$$R_1 \rightarrow D_2 \rightarrow M$$
 is injective

Note: 2nd condition is satisfied if $\langle L_2 \leftarrow K_2 \rightarrow R_2 \rangle$ is injective.

Theorem (Habel-Müller-P 98, Ehrig-Kreowski 76) If $G \Rightarrow_{r_1} H \Rightarrow_{r_2} M$ are sequentially independent then there exists a graph H' such that $G \Rightarrow_{r_2} H' \Rightarrow_{r_1} M$.

Sequential critical pairs

A sequential critical pair consists of direct derivations

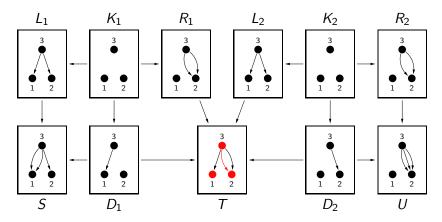


such that the following holds.

- 1. Conflict: The steps are not sequentially independent.
- 2. *Minimality:* $R_1 \rightarrow T \leftarrow L_2$ are jointly surjective.

Note: Finite rule sets possess, up to isomorphism, only finitely many critical pairs.

Example: sequential critical pair



▶ \nexists $(R_1 \to D_2, L_2 \to D_1)$ such that $R_1 \to T = R_1 \to D_2 \to T$ and $L_2 \to T = L_2 \to D_1 \to T$

• Equivalently, $h(R_1) \cap g(L_2) \neq h(K_1) \cap g(K_2)$

Main result

Theorem (Modularity of termination)

Let $\langle \Sigma, \mathcal{R} \rangle$ and $\langle \Sigma, \mathcal{S} \rangle$ be terminating systems. If there are no critical pairs of form $S \Rightarrow_{\mathcal{R}} T \Rightarrow_{\mathcal{S}} U$, then the combined system $\langle \Sigma, \mathcal{R} \cup \mathcal{S} \rangle$ is terminating.

Remark

Notice the symmetry in the statement: $\mathcal{R} \cup \mathcal{S}$ can have critical pairs of form either $\Rightarrow_{\mathcal{R}} \Rightarrow_{\mathcal{S}}$ or $\Rightarrow_{\mathcal{S}} \Rightarrow_{\mathcal{R}}$, but not of both forms.

Proof of main result

Let $\langle \Sigma, \mathcal{R} \rangle$ and $\langle \Sigma, \mathcal{S} \rangle$ be terminating systems and assume that there are no critical pairs of form $S \Rightarrow_{\mathcal{R}} T \Rightarrow_{\mathcal{S}} U$. Suppose there is an infinite derivation

$$G_1 \underset{\mathcal{R}\cup\mathcal{S}}{\Rightarrow} G_2 \underset{\mathcal{R}\cup\mathcal{S}}{\Rightarrow} G_3 \underset{\mathcal{R}\cup\mathcal{S}}{\Rightarrow} \dots$$

Because \mathcal{R} and \mathcal{S} are terminating, the derivation must contain infinitely many $\Rightarrow_{\mathcal{R}}$ -steps and infinitely many $\Rightarrow_{\mathcal{S}}$ -steps. Any two steps $G_k \Rightarrow_{\mathcal{R}} G_{k+1} \Rightarrow_{\mathcal{S}} G_{k+2}$ in the sequence must be sequentially independent: otherwise they could be restricted to a critical pair of form $S \Rightarrow_{\mathcal{R}} T \Rightarrow_{\mathcal{S}} U$. By sequential independence, the steps can be swapped such that $G_k \Rightarrow_{\mathcal{S}} G'_{k+1} \Rightarrow_{\mathcal{R}} G_{k+2}$. Thus all $\Rightarrow_{\mathcal{S}}$ -steps can be pushed to the beginning of the derivation, resulting in an infinite sequence of $\Rightarrow_{\mathcal{S}}$ -steps (illustration follows). This contradicts the fact that $\langle \Sigma, \mathcal{S} \rangle$ is terminating.

Proof illustration: sorting an infinite derivation

$$G_{0} \Rightarrow_{\mathcal{R}} G_{1} \Rightarrow_{\mathcal{R}} G_{2} \Rightarrow_{\mathcal{S}} G_{3} \Rightarrow_{\mathcal{R}} G_{4} \Rightarrow_{\mathcal{S}} G_{5} \Rightarrow \dots$$

$$\downarrow$$

$$G_{0} \Rightarrow_{\mathcal{R}} G_{1} \Rightarrow_{\mathcal{S}} G'_{2} \Rightarrow_{\mathcal{R}} G_{3} \Rightarrow_{\mathcal{R}} G_{4} \Rightarrow_{\mathcal{S}} G_{5} \Rightarrow \dots$$

$$\downarrow$$

$$G_{0} \Rightarrow_{\mathcal{S}} G'_{1} \Rightarrow_{\mathcal{R}} G'_{2} \Rightarrow_{\mathcal{R}} G_{3} \Rightarrow_{\mathcal{R}} G_{4} \Rightarrow_{\mathcal{S}} G_{5} \Rightarrow \dots$$

$$\downarrow$$

$$G_{0} \Rightarrow_{\mathcal{S}} G'_{1} \Rightarrow_{\mathcal{R}} G'_{2} \Rightarrow_{\mathcal{R}} G_{3} \Rightarrow_{\mathcal{S}} G'_{4} \Rightarrow_{\mathcal{R}} G_{5} \Rightarrow \dots$$

$$\downarrow$$

$$G_{0} \Rightarrow_{\mathcal{S}} G'_{1} \Rightarrow_{\mathcal{R}} G'_{2} \Rightarrow_{\mathcal{S}} G'_{3} \Rightarrow_{\mathcal{R}} G'_{4} \Rightarrow_{\mathcal{R}} G_{5} \Rightarrow \dots$$

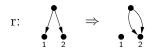
$$\downarrow$$

$$G_{0} \Rightarrow_{\mathcal{S}} G'_{1} \Rightarrow_{\mathcal{S}} G''_{2} \Rightarrow_{\mathcal{R}} G'_{3} \Rightarrow_{\mathcal{R}} G'_{4} \Rightarrow_{\mathcal{R}} G_{5} \Rightarrow \dots$$

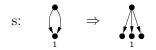
$$\downarrow$$

2

Example 1



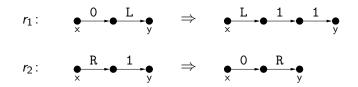
Reduces the number of nodes whose out-edges have different targets.



Reduces the number of nodes whose out-edges have a shared target.

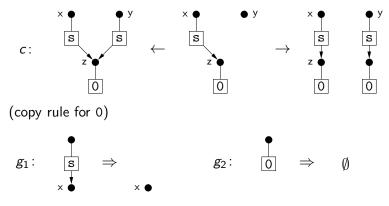
There is no critical pair $S \underset{s}{\Rightarrow} T \underset{r}{\Rightarrow} U$, hence $\{r, s\}$ is terminating.

Example 2



- Shown to be terminating in [Bruggink-König-Zantema 14] by constructing a weighted type graph over the tropical semiring.
- Simple termination proof by modularity: r₁ reduces the number of 0's and r₂ reduces the number of 1's, hence both rules are terminating. There are no critical pairs of form S ⇒r₁ T ⇒r₂ U, thus {r₁, r₂} is terminating.

Example 3 (jungles)



(garbage collection)

- Rule *c* reduces the value $\sum_{v \in V_G} indegree(v)^2$
- ▶ Rules *g*₁ and *g*₂ are size-reducing
- ▶ There are no critical pairs of form $S \Rightarrow_{g_{1/2}} T \Rightarrow_c U$, thus $\{c, g_1, g_2\}$ is terminating

Conclusion

- Black box-combination of termination proofs: the proofs of the component systems need not be inspected and can be constructed using arbitrary techniques
- Condition can be mechanically checked by generating sequential critical pairs between component systems
- Applicable to arbitrary (hyper-)graph transformation systems with injective and non-injective rules

Theorem (Dershowitz, ICALP 1981)

Let \mathcal{R} and \mathcal{S} be terminating term-rewriting systems over some set of terms T. If \mathcal{R} is left-linear, \mathcal{S} is right-linear, and there is no overlap between the left-hand sides of \mathcal{R} and right-hand sides of \mathcal{S} , then the combined system $\mathcal{R} + \mathcal{S}$ also terminates.

Future work

Theorem (Generalised result)

Let $\langle \Sigma, \mathcal{R} \rangle$ and $\langle \Sigma, \mathcal{S} \rangle$ be terminating systems. The combined system $\langle \Sigma, \mathcal{R} \cup \mathcal{S} \rangle$ is terminating if the following holds: For each critical pair of form $S \Rightarrow_{\mathcal{R}} T \Rightarrow_{\mathcal{S}} U$ there exists a derivation

$$S \stackrel{+}{\Rightarrow} T' \stackrel{*}{\Rightarrow} U$$

such that $\operatorname{track}_{S\Rightarrow_{\mathcal{S}}^{+}T'\Rightarrow_{\mathcal{R}}^{*}U}$ is defined for all nodes in S.

Note: The condition is mechanically checkable.

Extensions

- Rules with application conditions (e.g. NACs)
- Attributed graph transformation
- Graph programs