Characterisation of Parallel Independence in AGREE-Rewriting

Michael Löwe (FHDW Hannover) ICGT 2018, Toulouse June 26, 2018

Contents

Partial arrow classifier **AGREE-rewriting** Gluing construction Residual Parallel independence Characterisation

- A category has *partial arrow classifiers*, if the following object-indexed family of morphisms exists:
- For every object O, there is a monomorphism $\eta_0: O \to O^{\bullet}$
- which satisfies the following universal property:
- For every pair of morphisms ($i: D \rightarrow X, f: D \rightarrow O$) with
- monic *i*, there is a unique morphism $(i, f)^{\bullet} : X \rightarrow O^{\bullet}$ such
- that the pair (i, f) is pullback of the pair $(\eta_0, (i, f)^{\bullet})$.

- A category has *partial arrow classifiers*, if the following object-indexed family of morphisms exists:
- For every object O, there is a monomorphism $\eta_0: O \to O^{\bullet}$
- which satisfies the following universal property:
- For every pair of morphisms ($i: D \rightarrow X, f: D \rightarrow O$) with
- monic *i*, there is a unique morphism $(i, f)^{\bullet} : X \rightarrow O^{\bullet}$ such
- that the pair (i, f) is pullback of the pair $(\eta_0, (i, f)^{\bullet})$.

- A category has partial arrow classifiers, if the following object-indexed family of morphisms exists:
- For every object O, there is a monomorphism $\eta_0: O \rightarrow O^{\bullet}$
- which satisfies the following universal property:
- For every pair of morphisms ($i: D \rightarrow X, f: D \rightarrow O$) with
- monic *i*, there is a unique morphism $(i, f)^{\bullet} : X \rightarrow O^{\bullet}$ such
- that the pair (i, f) is pullback of the pair (η_0 , (i, f)).

- A category has partial arrow classifiers, if the following object-indexed family of morphisms exists:
- For every object O, there is a monomorphism $\eta_0: O \rightarrow O^{\bullet}$
- which satisfies the following universal property:
- For every pair of morphisms ($i: D \rightarrow X, f: D \rightarrow O$) with
- Monic *i*, there is a unique morphism $(i, f)^{\bullet} : X \to O^{\bullet}$ such that the pair (i, f) is pullback of the pair $(\eta_0, (i, f)^{\bullet})$.

A category has partial arrow classifiers, if the following Dject-indexed family of morphisms exists: For every object O, there is a monomorphism $\eta_0: O \rightarrow O^{\bullet}$ η_0 satisfies the following universal property: every pair of morphisms ($i : D \rightarrow X, f : D \rightarrow O$) with point *i*, there is a unique morphism $(i, f)^{\bullet} : X \rightarrow O^{\bullet}$ such that the pair (i, f) is pullback of the pair $(\eta_0, (i, f)^{\bullet})$.

A category has partial arrow classifiers, if the following Oject-indexed family of morphisms exists: For every object O, there is a monomorphism $\eta_0: O \rightarrow O^{\bullet}$ η_0 satisfies the following universal property: • every pair of morphisms ($i : D \rightarrow X, f : D \rightarrow O$) with The is a unique morphism $(i, f)^{\bullet} : X \rightarrow O^{\bullet}$ such that the pair (if) is pullback of the pair (η_0 , (i, f)).

- bject O there is a monomorphism $\eta_0: O \rightarrow O^{\bullet}$
 - g universal property:
 - phisms (i : D \rightarrow X, f : D \rightarrow O) with
 - a unique morphism $(i, f)^{\bullet} : X \rightarrow O^{\bullet}$ such

[*i*, *f*] = $[\eta_{0}, id] \circ [id, (i, f)^{\bullet}] =$ $[\eta_{0}, \text{id}] \circ l((i, f)))$

A category has partial arrow classifiers, if for every object O there is object O^{\bullet} and partial morphism $\varepsilon_0: O^{\bullet} \rightarrow O$ such that for every object X and partial morphism ($p: X \rightarrow O$) there is unique total morphism $p^{\bullet}: X \to O^{\bullet}$ with $\varepsilon_{O} \circ \iota(p^{\bullet}) = p$, where functor ι is given by: $\iota_0: O \mapsto O$ and $\iota_M: m \mapsto [id, m]$. The embedding from category C (with total arrows) into the category of partial arrows over C is a free construction!

Pushouts are hereditary Pushouts preserve monomorphism Pushouts along monomorphisms are pullbacks Category has epi-mono-factorisation Pullbacks are preserved by embedding

The embedding from category C (with total arrows) into the category of partial arrows over C is a free construction!

UNIVERSITY OF APPLIED SCIENCES

Pullback

id

Pullback

AGREE-Rewriting

AGREE-Rewriting

Rule:

AGREE-Rewriting $\begin{pmatrix} (t, l)^{\bullet} \\ \eta_{L} \\ \eta_{L$

Rule:

UNIVERSITY OF APPLIED SCIENCES FACHHOCHSCHULE FÜR DIE WIRTSCHAFT HANNOVER t r K R

AGREE-Rewriting (t, l) **(PB)** Inverse Match: η_{L} m **Base Match:** m G

Rule:

14

UNIVERSITY OF APPLIED SCIENCES FUR DIE SCHAFT HANNOVER t R

AGREE-Rewriting (t, l) (PB) η_{L} m (PB) m PB) g G

Inverse Match:

Rule:

Base Match:

AGREE-Rewriting (t, l) **(PB**) η_{L} m (PB) m (PB) g G

Inverse Match:

Rule:

Base Match:

Inverse Match:

Rule:

Base Match:

Trace:

AGREE: Practical Example

Extract abstract type (Version 1):

AGREE: Practical Example

Extract abstract type (Version 2):

AGREE: Local Copies

AGREE: Local Copies

AGREE: Local Copies

AGREE: Global Copies

AGREE: Global Copies

AGREE: Local Deletion

AGREE: Local Deletion

AGREE: Global Deletion

AGREE: Global Deletion

AGREE: Local Addition

UNIVERSITY OF APPLIED SCIENCES

AGREE: Local Addition

UNIVERSITY OF APPLIED SCIENCES

FACHHOCHSCHULE FÜR DIE WIRTSCHAFT HANNOVER

UNIVERSITY OF APPLIED SCIENCES

▶ R (FPC) P P **(PO)** h

Gluing for DPO-Rewriting

Gluing for DPO-Rewriting

Gluing for SPO-Rewriting

Gluing for AGREE-Rewriting

Gluing for AGREE-Rewriting

HANNOVER

UNIVERSITY OF APPLIED SCIENCES

UNIVERSITY OF APPLIED SCIENCES

Gluing diagrams compose and decompose like pushouts

UNIVERSITY OF APPLIED SCIENCES

$m^{\bullet} \circ g = m'^{\bullet}, \ m_{gh}^{\bullet} \circ h = m'^{\bullet}$ m_{gh}^{\bullet} $g \circ m' = m, \ h \circ m' = m_{gh}$

$g \circ m' = m, h \circ m' = m_{gh}$

$g \circ m' = m, h \circ m' = m_{gh}$

UNIVERSITY OF APPLIED SCIENCES

 $\begin{array}{c} m' & (h \circ m') \\ h & h \\ h & H \end{array}$

HANNOVER

(h \circ m') m'• (FPC) X V Y (PB) (PB) h' W

......

Match m₁ for rule 1 has residual after applying rule 2 at m₂, only if I. everything that m_1 needs (locally copies, deletes, or preserves) is neither copied nor deleted (neither locally nor globally) by rule 2 at match m₂.

......

Match m₁ for rule 1 has residual after applying rule 2 at m₂, only if

preserves) is neither copied nor deleted (neither

2. everything that rule I adds is neither (globally)

copied nor deleted by rule 2 at match m₂.

- I. everything that m₁ needs (locally copies, deletes, or locally nor globally) by rule 2 at match m₂.

.

Characterising Independence Match m₁ for rule 1 has residual after applying rule 2 at m₂, if and only if I. everything that m_1 needs (locally copies, deletes, or preserves) is neither copied nor deleted (neither locally nor globally) by rule 2 at match m₂. 2. everything that rule I adds is neither (globally) copied nor deleted by rule 2 at match m₂.

Conclusion

AGREE-rewriting is instance of the Gluing Construction! There is a precise notion of residual! Gluing and mutual residuals provides Church-Rosser! Residuals can be characterized syntactically!

Are global effects useful?

Thank you for your attention

