Characterisation of Parallel Independence in AGREE-Rewriting

Michael Löwe (FHDW Hannover)
ICGT 20I8,Toulouse
June 26, 2018

Contents

Partial arrow classifier
AGREE-rewriting
Gluing construction
Residual
Parallel independence
Characterisation

Partial Arrow Classifier

A category has partial arrow classifiers, if the following object-indexed family of morphisms exists:

For every object 0 , there is a monomorphism $\eta_{0}: 0 \rightarrow 0^{\circ}$ which satisfies the following universal property:

For every pair of morphisms ($i: D \rightarrow X, f: D \rightarrow 0$) with monic i, there is a unique morphism $(i, f)^{\bullet}: X \rightarrow 0^{\bullet}$ such that the pair (i, f) is pullback of the pair $\left(\eta_{0},(i, f)^{\bullet}\right)$.

Partial Arrow Classifier

A category has partial arrow classifiers, if the following object-indexed family of morphisms exists:

For every object 0 , there is a monomorphism $\eta_{0}: 0 \rightarrow 0^{\circ}$ which satisfies the following universal property:

For every pair of morphisms ($i: D \rightarrow X, f: D \rightarrow 0$) with monic i, there is a unique morphism $(i, f)^{\bullet}: X \rightarrow 0^{\bullet}$ such that the pair (i, f) is pullback of the pair $\left(\eta_{0},(i, f)^{\bullet}\right)$.

Partial Arrow Classifier

A category has partial arrow classifiers, if the following obiect-indexed family of mordhisms exists:

For every object 0 , there is a monomorphism $\eta_{0}: 0$which satisnes the rollowing universal property For every pair of morphisms $(i: D \rightarrow X, f: D \rightarrow 0)$ with monic i, there is a unique morphism $\left(i, F^{\circ}\right)^{\circ}: X \rightarrow 0^{\circ}$ such that the pair (i, f) is pullback of the pair $\left(\eta o,(i, f)^{\bullet}\right)$.

Partial Arrow Classifier

Partial Arrow Classifier

Partial Arrow Classifier

Partial Arrow Classifier

Partial Arrow Classifier

Partial Arrow Classifier

Partial Arrow Classifier

Partial Arrow Classifier

Partial Arrow Classifier

Partial Arrow Classifier

Partial Arrow Classifier

A category has partial arrow classifiers, if for every object O there is object O^{\bullet} and partial morphism $\varepsilon o: O^{\bullet} \rightarrow 0$ such that for every object X and partial morphism $(p: X \rightarrow 0)$ there is unique total morphism $p^{\bullet}: X \rightarrow O^{\bullet}$ with $\varepsilon_{0} \circ \iota\left(p^{\bullet}\right)=p$, where functor ι is given by: $\iota: 0 \longmapsto 0$ and $\iota m: m \longmapsto[i d, m]$.

The embedding from category C (with total arrows) into the category of partial arrows over C is a free construction!

Partial Arrow Classifier

Pushouts are hereditary
Pushouts preserve monomorphism
Pushouts along monomorphisms are pullbacks
Category has epi-mono-factorisation
Pullbacks are preserved by embedding
The embedding from category C (with total arrows) into the category of partial arrows over C is a free construction!

Partial Arrow Classifier: Set

Partial Arrow Classifier: Set

 HANNOVER

Partial Arrow Classifier: Set

Partial Arrow Classifier: Set

Partial Arrow Classifier: Graph

Partial Arrow Classifier: Graph

 HANNOVER

Partial Arrow Classifier: Graph

Partial Arrow Classifier: Graph

Partial Arrow Classifier: OO-Model

Partial Arrow Classifier: OO-Model

 HANNOVER

Partial Arrow Classifier: OO-Model

Partial Arrow Classifier: OO-Model

Partial Arrow Classifier: OO-Model

,Inversion‘ of Matches

,Inversion‘ of Matches

,Inversion‘ of Matches

,Inversion‘ of Matches

Pullback

AGREE-Rewriting

AGREE-Rewriting

AGREE-Rewriting

Rule:

AGREE-Rewriting

FACHHOCHSCHULE FÜR DIE WIRTSCHAFT HANNOVER

AGREE-Rewriting

AGREE-Rewriting

AGREE-Rewriting

Context Rule:
Inverse Male:
Base Match:
Trace:

AGREE: Practical Example

Extract abstract type (Version I):

AGREE: Practical Example

Extract abstract type (Version 2):

AGREE: Local Copies

AGREE: Local Copies

AGREE: Local Copies

AGREE: Global Copies

AGREE: Global Copies

AGREE: Local Deletion

AGREE: Local Deletion

AGREE: Global Deletion

AGREE: Global Deletion

AGREE: Local Addition

AGREE: Local Addition

Gluing Construction

Gluing Construction

$$
\begin{aligned}
& (r, l) \circ(q, p)=(n, m) \circ(h, g) \\
& L \stackrel{I}{\longleftrightarrow} \mathrm{~K} \xrightarrow{r} R
\end{aligned}
$$

$$
\begin{aligned}
& \downarrow^{n} \text { (FPC) } \downarrow^{v} \text { (PO) } \downarrow q \\
& \mathrm{G} \underset{\mathrm{~g}}{\longleftarrow} \mathrm{D} \xrightarrow[h]{\longrightarrow} \mathrm{H}
\end{aligned}
$$

Gluing for DPO-Rewriting

Gluing for DPO-Rewriting

 HANNOVER

Gluing for SPO-Rewriting

Gluing for SqPO-Rewriting

Gluing for AGREE-Rewriting

Gluing for AGREE-Rewriting

Gluing Construction

Gluing diagrams compose and decompose like pushouts

Parallel Independence

Parallel Independence

Parallel Independence

Parallel Independence

Residual

Characterising Independence

Characterising Independence

Match m_{1} for rule I has residual after applying rule 2 at m_{2}, only if
I. everything that m I needs (locally copies, deletes, or preserves) is neither copied nor deleted (neither locally nor globally) by rule 2 at match m_{2}.

Characterising Independence

Characterising Independence

Characterising Independence

Match m_{1} for rule I has residual after applying rule 2 at m_{2}, only if
I. everything that m I needs (locally copies, deletes, or preserves) is neither copied nor deleted (neither locally nor globally) by rule 2 at match m_{2}.
2. everything that rule I adds is neither (globally) copied nor deleted by rule 2 at match m_{2}.

2. everything that rule I adds is neither (globally) copied nor deleted by rule 2 at match m_{2}.

Characterising Independence

Characterising Independence

Characterising Independence

Characterising Independence

Match m_{1} for rule I has residual after applying rule 2 at m_{2}, if and only if
I. everything that m I needs (locally copies, deletes, or preserves) is neither copied nor deleted (neither locally nor globally) by rule 2 at match m_{2}.
2. everything that rule I adds is neither (globally) copied nor deleted by rule 2 at match m_{2}.

Characterising Independence

Conclusion

AGREE-rewriting is instance of the Gluing Construction!
There is a precise notion of residual!
Gluing and mutual residuals provides Church-Rosser!
Residuals can be characterized syntactically!

Are global effects useful?

Thank you for your attention

