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A series of recurring manual 
tests have to be executed.

A test manager has to 
create a test schedule 
assigning test items to 

developers. 

Developers are only 
available for this 

purpose a few hours a 
week due to other 
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Developers are also on 
vacation now and then…

… and might 
not have the 

required 
expertise for 
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duration: EInt

Execution

Area

Task

Responsibility

Person

hours: EInt
week: WEEKS

Availability

There are predefined areas and 
people in charge of these areas.

A test schedule maps 
executions to availabilities.
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t:Task p:Person

e:Execution a:Availability

e.duration ≤ a.hours

++

In general, anyone can do 
anything as long as they 

have the time for it…
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in your area of responsibility?
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Or perhaps being an expert makes 
you the best tester possible?
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Should the same person test as 
many executions of the same task as 
possible?  Or is this a terrible idea? 
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1. Allocation Engineering: 
• Tasks to resources 
• Programs to ECUs 
• Functions to nodes in a network 
• … 

2. Traceability Maintenance: 
• Suggest traceability links 
• Check manually created traceability links 
• Flag “suspect links” after changes 

3. Model Synchronisation: 
• Start with existing, independently 

created models 
• Identify inconsistencies
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Use allocation rules 
(derived from a TGG) to 

create all possible 
correspondence links.

While these links are 
only candidates, they 

still make sense locally 

This step exploits an 
incremental graph 
pattern matcher

This step requires a 
necessary and sufficient 
condition for termination!
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A ⃗x ≤ ⃗b

Which candidates will 
be part of the solution?

⃗x ∈ ℤn
2
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max ⃗c ⋅ ⃗x

A ⃗x ≤ ⃗b

Domain-specific weights 
for each candidate

⃗c ∈ ℝnE.g., prefer assigning multiple 
executions of the same task 

to the same person
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max ⃗c ⋅ ⃗x

A ⃗x ≤ ⃗b

Constraints to ensure that 
the chosen solution is in the 

language of the TGG.
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A ⃗x ≤ ⃗b
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e:Execution a:Availability

e.duration ≤ a.hours

++
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E.g, let’s assume all candidates 
for creating this link are:  

x1, x2, x3

This candidate requires at 
least one of them to exist:

x4 ⇒ x1 ∨ x2 ∨ x3
x4 ≤ x1 + x2 + x3

All such inequalities are 
collected to form:

A ∈ ℝm×n, b ∈ ℝn
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max ⃗c ⋅ ⃗x
A ⃗x ≤ ⃗b

⃗x *

This step exploits 
mature ILP solvers
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Step 3:  Solve (Optimise) ILP and Interpret Solution
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⃗x *

Our approach is tolerant in the 
sense that we can determine 
partial solutions (all variables 
are set to 0 in the worst case)
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Operation Source Corr Target

CC mark create mark

CO mark mark mark

FWD_OPT mark create create

BWD_OPT create create mark

Our initial focus 
(Consistency Check 
via correspondence 

link creation)
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Operation Source Corr Target

CC mark create mark

CO mark mark mark

FWD_OPT mark create create

BWD_OPT create create mark

Check Only:  
Check existing 

triple for 
consistency
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Operation Source Corr Target

CC mark create mark

CO mark mark mark

FWD_OPT mark create create

BWD_OPT create create mark

Normal initial (batch) fwd 
and bwd transformations; 

but now complete, 
tolerant, and optimal wrt. 
to an objective function 
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Operation Source Corr Target

CC mark create mark

CO mark mark mark

FWD_OPT mark create create

BWD_OPT create create mark

All definitions, proofs, and most parts of 
the implementation can be formulated 

generically and configured for each 
case using the entries in this table!
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