

Erhan Leblebici, Anthony Anjorin, Andy Schürr

ON COMBINING TRIPLE GRAPH GRAMMARS AND LINEAR OPTIMISATION TECHNIQUES

A Configurable, Model-Driven Approach to Optimal Scheduling using Triple Graph Grammars and Linear Progamming.

A Configurable, Model-Driven Approach to Optimal Scheduling using Triple Graph Grammars and Linear Progamming.

A Configurable, Model-Driven Approach to Optimal Scheduling using Triple Graph Grammars and Linear Progamming.

A Configurable, Model-Driven Approach to Optimal Scheduling using Triple Graph Grammars and Linear Progamming.

A Configurable, Model-Driven Approach to Optimal Scheduling using Triple Graph Grammars and Linear Progamming.

A Configurable, Model-Driven Approach to Optimal Scheduling using Triple Graph Grammars and Linear Progamming.

A Real-World Example: Metamodels

A Real-World Example: Metamodels

1. Allocation Engineering:

- Tasks to resources
- Programs to ECUs
- Functions to nodes in a network
- •

1. Allocation Engineering:

- Tasks to resources
- Programs to ECUs
- Functions to nodes in a network

- 2. Traceability Maintenance:
 - Suggest traceability links
 - Check manually created traceability links
 - Flag "suspect links" after changes

1. Allocation Engineering:

- Tasks to resources
- Programs to ECUs
- Functions to nodes in a network

- 2. Traceability Maintenance:
 - Suggest traceability links
 - Check manually created traceability links
 - Flag "suspect links" after changes

3. Model Synchronisation:

- Start with existing, independently created models
- Identify inconsistencies

Erhan Leblebici:

2016: Towards a Graph Grammar-Based Approach to Inter-Model Consistency Checks with Traceability Support. Bx@ETAPS 2016: 35-39

Erhan Leblebici, Anthony Anjorin, Andy Schürr:

2017: Inter-model Consistency Checking Using Triple Graph Grammars and Linear Optimization Techniques. FASE 2017: 191-207

Erhan Leblebici:

2018: Inter-Model Consistency Checking and Restoration with Triple Graph Grammars. PhD Thesis, Darmstadt University of Technology, Germany 2018

Nils Weidmann:

2018: Consistency Management via a Combination of Triple Graph

ZUIO. Grammars and Integer Linear Programming. Master's Thesis, Paderborn University, Germany 2018

Erhan Leblebici:

Towards a Graph Grammar-Based Approach to Inter-Model Consistency Checks with Traceability Support. Bx@ETAPS 2016: 35-39

Erhan Leblebici, Anthony Anjorin, Andy Schürr:

2017: Inter-model Consistency Checking Using Triple Graph Grammars and Linear Optimization Techniques. FASE 2017: 191-207

Erhan Leblebici:

2018: Inter-Model Consistency Checking and Restoration with Triple Graph Grammars. PhD Thesis, Darmstadt University of Technology, Germany 2018

Nils Weidmann:

2018: Consistency Management via a Combination of Triple Graph

ZUIO. Grammars and Integer Linear Programming. Master's Thesis, Paderborn University, Germany 2018

Basic idea of how to perform consistency checking with TGGs

Erhan Leblebici:

Towards a Graph Grammar-Based Approach to Inter-Model Consistency Checks with Traceability Support. Bx@ETAPS 2016: 35-39

Erhan Leblebici, Anthony Anjorin, Andy Schürr:

2017: Inter-model Consistency Checking Using Triple Graph Grammars and Linear Optimization Techniques. FASE 2017: 191-207

Erhan Leblebici:

2018: Inter-Model Consistency Checking and Restoration with Triple Graph Grammars. PhD Thesis, Darmstadt University of Technology, Germany 2018

Nils Weidmann:

2018: Consistency Management via a Combination of Triple Graph

ZUIO. Grammars and Integer Linear Programming. Master's Thesis, Paderborn University, Germany 2018

 Erhan Leblebici:
Towards a Graph Grammar-Ba Consistency Checks with Trac Bx@ETAPS 2016: 35-39
Full details, implementation, and evaluation in eMoflon
Erhan Leblebici, Anthony Anjorin, Andy Schürr:
Inter-model Consistency Checking Using Triple Graph

FASE 2017: 191-207

Erhan Leblebici:

2018: Inter-Model Consistency Checking and Restoration with Triple Graph Grammars.

Grammars and Linear Optimization Techniques.

PhD Thesis, Darmstadt University of Technology, Germany 2018

Nils Weidmann:

2018: Consistency Management via a Combination of Triple Graph

ZUIO: Grammars and Integer Linear Programming. Master's Thesis, Paderborn University, Germany 2018

Erhan Leblebici:

2016: Towards a Graph Grammar-Based Approach to Inter-Model Consistency Checks with Traceability Support. Bx@ETAPS 2016: 35-39

Erhan Leblebici, Anthony Anjorin, Andy Schürr:

2017: Inter-model Consistency Check Grammars and Linear Optimiza R FASE 2017: 191-207

Remaining formal proofs, industrial case with Siemens

Erhan Leblebici:

Inter-Model Consistency Checking and Restoration with
Triple Graph Grammars.

PhD Thesis, Darmstadt University of Technology, Germany 2018

Nils Weidmann:

2018: Consistency Management via a Combination of Triple Graph

ZUIO: Grammars and Integer Linear Programming. Master's Thesis, Paderborn University, Germany 2018

Erhan Leblebici:

2016: Towards a Graph Grammar-Based Approach to Inter-Model Consistency Checks with Traceability Support. Bx@ETAPS 2016: 35-39

Erhan Leblebici, Anthony Anjorin, Andy Schürr:

2017: Inter-model Consistency Checking Using Triple Graph Grammars and Linear Optimization Techniques. FASE 2017: 191-207

Erhan Leblebici:

2018: Inter-Model Consistency Check Triple Graph Grammars. PhD Thesis, Darmstadt University Other consistency management tasks (work in progress)

Nils Weidmann:

Consistency Management via a Combination of Triple Graph Grammars and Integer Linear Programming.

Master's Thesis, Paderborn University, Germany 2018

 $\overrightarrow{x} \in \mathbb{Z}_2^n$ Which candidates will be part of the solution? max \overrightarrow{c} (\overrightarrow{x})

 $A\overrightarrow{x} \leq \overrightarrow{b}$

 $\overrightarrow{c} \in \mathbb{R}^{n}$ Domain-specific weights for each candidate $\overrightarrow{c} \cdot \overrightarrow{x}$

 $A\overrightarrow{x} \leq \overrightarrow{b}$

E.g., prefer assigning multiple executions of the same task to the same person $\overrightarrow{c} \in \mathbb{R}^n$

Domain-specific weights for each candidate

 $A\overrightarrow{x} \le \overrightarrow{b}$

 \overrightarrow{C}

max

 \overrightarrow{x}

This step exploits mature ILP solvers

Our approach is *tolerant* in the sense that we can determine partial solutions (all variables are set to 0 in the worst case)

Operation	Source	Corr	Target
CC	mark	create	mark
СО	mark	mark	mark
FWD_OPT	mark	create	create
BWD_OPT	create	create	mark

Operation	Source	Corr	Target	Our initial focus (C onsistency C heck
CC	mark	create	mark	via correspondence link creation)
СО	mark	mark	mark	
FWD_OPT	mark	create	create	
BWD_OPT	create	create	mark	

Operation	Source	Corr	Target	
CC	mark	create	mark	Check Only: Check existing
СО	mark	mark	mark	triple for consistency
FWD_OPT	mark	create	create	
BWD_OPT	create	create	mark	

Operation	Source	Corr	Target	Normal initial (batch) fwd
СС	mark	create	mark	and bwd transformations; but now complete,
СО	mark	mark	mark	tolerant, and optimal wrt. to an objective function
FWD_OPT	mark	create	create	
BWD_OPT	create	create	mark	

Operation	Source	Corr	Target
CC	mark	create	mark
СО	mark	mark	mark
FWD_OPT	mark	create	create
BWD_OPT	create	create	mark

All definitions, proofs, and most parts of the implementation can be formulated generically and configured for each case using the entries in this table!

eMoflon