
ON COMBINING TRIPLE GRAPH GRAMMARS
AND LINEAR OPTIMISATION TECHNIQUES

Erhan Leblebici, Anthony Anjorin, Andy Schürr

A Real-World Example: Overview

!2

Robin Oppermann: 
A Configurable, Model-Driven Approach to Optimal Scheduling using
Triple Graph Grammars and Linear Progamming.
Ongoing Master’s Thesis, Paderborn University in collaboration with dSpace

https://dblp.org/pers/hd/c/Czarnecki:Krzysztof

A Real-World Example: Overview

!2

Robin Oppermann: 
A Configurable, Model-Driven Approach to Optimal Scheduling using
Triple Graph Grammars and Linear Progamming.
Ongoing Master’s Thesis, Paderborn University in collaboration with dSpace

A series of recurring manual
tests have to be executed.

https://dblp.org/pers/hd/c/Czarnecki:Krzysztof

A Real-World Example: Overview

!2

Robin Oppermann: 
A Configurable, Model-Driven Approach to Optimal Scheduling using
Triple Graph Grammars and Linear Progamming.
Ongoing Master’s Thesis, Paderborn University in collaboration with dSpace

A series of recurring manual
tests have to be executed.

A test manager has to
create a test schedule
assigning test items to

developers.

https://dblp.org/pers/hd/c/Czarnecki:Krzysztof

A Real-World Example: Overview

!2

Robin Oppermann: 
A Configurable, Model-Driven Approach to Optimal Scheduling using
Triple Graph Grammars and Linear Progamming.
Ongoing Master’s Thesis, Paderborn University in collaboration with dSpace

A series of recurring manual
tests have to be executed.

A test manager has to
create a test schedule
assigning test items to

developers.

Developers are only
available for this

purpose a few hours a
week due to other
responsibilities.

https://dblp.org/pers/hd/c/Czarnecki:Krzysztof

A Real-World Example: Overview

!2

Robin Oppermann: 
A Configurable, Model-Driven Approach to Optimal Scheduling using
Triple Graph Grammars and Linear Progamming.
Ongoing Master’s Thesis, Paderborn University in collaboration with dSpace

A series of recurring manual
tests have to be executed.

A test manager has to
create a test schedule
assigning test items to

developers.

Developers are only
available for this

purpose a few hours a
week due to other
responsibilities.

Developers are also on
vacation now and then…

https://dblp.org/pers/hd/c/Czarnecki:Krzysztof

A Real-World Example: Overview

!2

Robin Oppermann: 
A Configurable, Model-Driven Approach to Optimal Scheduling using
Triple Graph Grammars and Linear Progamming.
Ongoing Master’s Thesis, Paderborn University in collaboration with dSpace

A series of recurring manual
tests have to be executed.

A test manager has to
create a test schedule
assigning test items to

developers.

Developers are only
available for this

purpose a few hours a
week due to other
responsibilities.

Developers are also on
vacation now and then…

… and might
not have the

required
expertise for

all tasks.

https://dblp.org/pers/hd/c/Czarnecki:Krzysztof

A Real-World Example: Metamodels

!3

duration: EInt

Execution

Area

Task

Responsibility

Person

hours: EInt
week: WEEKS

Availability

A Real-World Example: Metamodels

!3

duration: EInt

Execution

Area

Task

Responsibility

Person

hours: EInt
week: WEEKS

Availability

There are predefined areas and
people in charge of these areas.

A Real-World Example: Metamodels

!3

duration: EInt

Execution

Area

Task

Responsibility

Person

hours: EInt
week: WEEKS

Availability

There are predefined areas and
people in charge of these areas.

A test schedule maps
executions to availabilities.

A Real-World Example: Allocation Rules

!4

t:Task p:Person

e:Execution a:Availability

e.duration ≤ a.hours

++

A Real-World Example: Allocation Rules

!4

t:Task p:Person

e:Execution a:Availability

e.duration ≤ a.hours

++

In general, anyone can do
anything as long as they

have the time for it…

A Real-World Example: Allocation Rules

!5

t:Task p:Person

e:Execution a:Availability

e.duration ≤ a.hours

++

t:Task p:Person

e:Execution a:Availability

e.duration ≤ a.hours

++

ar:Area r:Responsibility

p’:Person

A Real-World Example: Allocation Rules

!5

t:Task p:Person

e:Execution a:Availability

e.duration ≤ a.hours

++

t:Task p:Person

e:Execution a:Availability

e.duration ≤ a.hours

++

ar:Area r:Responsibility

p’:Person

Only test things that are not
in your area of responsibility?

A Real-World Example: Allocation Rules

!6

t:Task p:Person

e:Execution a:Availability

e.duration ≤ a.hours

++

t:Task p:Person

e:Execution a:Availability

e.duration ≤ a.hours

++

ar:Area r:Responsibility

p’:Person

t:Task p:Person

e:Execution a:Availability

e.duration ≤ a.hours

++

ar:Area r:Responsibility

A Real-World Example: Allocation Rules

!6

t:Task p:Person

e:Execution a:Availability

e.duration ≤ a.hours

++

t:Task p:Person

e:Execution a:Availability

e.duration ≤ a.hours

++

ar:Area r:Responsibility

p’:Person

t:Task p:Person

e:Execution a:Availability

e.duration ≤ a.hours

++

ar:Area r:Responsibility

Or perhaps being an expert makes
you the best tester possible?

A Real-World Example: Allocation Rules

!7

t:Task p:Person

e:Execution a:Availability

e.duration ≤ a.hours

++

t:Task p:Person

e:Execution a:Availability

e.duration ≤ a.hours

++

ar:Area r:Responsibility

p’:Person

t:Task p:Person

e:Execution a:Availability

e.duration ≤ a.hours

++

ar:Area r:Responsibility

t:Task p:Person

e:Execution a:Availability

e.duration ≤ a.hours

++

e’:Execution a’:Availability

A Real-World Example: Allocation Rules

!7

t:Task p:Person

e:Execution a:Availability

e.duration ≤ a.hours

++

t:Task p:Person

e:Execution a:Availability

e.duration ≤ a.hours

++

ar:Area r:Responsibility

p’:Person

t:Task p:Person

e:Execution a:Availability

e.duration ≤ a.hours

++

ar:Area r:Responsibility

t:Task p:Person

e:Execution a:Availability

e.duration ≤ a.hours

++

e’:Execution a’:Availability

Should the same person test as
many executions of the same task as
possible? Or is this a terrible idea?

A Real-World Example: Allocation Rules

!8

t:Task p:Person

e:Execution a:Availability

e.duration ≤ a.hours

++

t:Task p:Person

e:Execution a:Availability

e.duration ≤ a.hours

++

ar:Area r:Responsibility

p’:Person

t:Task p:Person

e:Execution a:Availability

e.duration ≤ a.hours

++

ar:Area r:Responsibility

t:Task p:Person

e:Execution a:Availability

e.duration ≤ a.hours

++

e’:Execution a’:Availability

Similar Application Domains

!9

Similar Application Domains

!9

1. Allocation Engineering:
• Tasks to resources
• Programs to ECUs
• Functions to nodes in a network
• …

Similar Application Domains

!9

1. Allocation Engineering:
• Tasks to resources
• Programs to ECUs
• Functions to nodes in a network
• …

2. Traceability Maintenance:
• Suggest traceability links
• Check manually created traceability links
• Flag “suspect links” after changes

Similar Application Domains

!9

1. Allocation Engineering:
• Tasks to resources
• Programs to ECUs
• Functions to nodes in a network
• …

2. Traceability Maintenance:
• Suggest traceability links
• Check manually created traceability links
• Flag “suspect links” after changes

3. Model Synchronisation:
• Start with existing, independently

created models
• Identify inconsistencies

Our Approach

!10

Erhan Leblebici, Anthony Anjorin, Andy Schürr: 
Inter-model Consistency Checking Using Triple Graph
Grammars and Linear Optimization Techniques.
FASE 2017: 191-207

Erhan Leblebici: 
Inter-Model Consistency Checking and Restoration with
Triple Graph Grammars.
PhD Thesis, Darmstadt University of Technology, Germany 2018

2017:

2018:

Nils Weidmann: 
Consistency Management via a Combination of Triple Graph
Grammars and Integer Linear Programming.
Master’s Thesis, Paderborn University, Germany 2018

2018:

Erhan Leblebici: 
Towards a Graph Grammar-Based Approach to Inter-Model
Consistency Checks with Traceability Support.
Bx@ETAPS 2016: 35-39

2016:

https://dblp.org/pers/hd/a/Anjorin:Anthony
https://dblp.org/pers/hd/s/Sch=uuml=rr:Andy
https://dblp.org/db/conf/fase/fase2017.html#LeblebiciAS17
https://dblp.org/db/conf/etaps/bx2016.html#Leblebici16

Our Approach

!10

Erhan Leblebici, Anthony Anjorin, Andy Schürr: 
Inter-model Consistency Checking Using Triple Graph
Grammars and Linear Optimization Techniques.
FASE 2017: 191-207

Erhan Leblebici: 
Inter-Model Consistency Checking and Restoration with
Triple Graph Grammars.
PhD Thesis, Darmstadt University of Technology, Germany 2018

2017:

2018:

Nils Weidmann: 
Consistency Management via a Combination of Triple Graph
Grammars and Integer Linear Programming.
Master’s Thesis, Paderborn University, Germany 2018

2018:

Erhan Leblebici: 
Towards a Graph Grammar-Based Approach to Inter-Model
Consistency Checks with Traceability Support.
Bx@ETAPS 2016: 35-39

2016:

https://dblp.org/pers/hd/a/Anjorin:Anthony
https://dblp.org/pers/hd/s/Sch=uuml=rr:Andy
https://dblp.org/db/conf/fase/fase2017.html#LeblebiciAS17
https://dblp.org/db/conf/etaps/bx2016.html#Leblebici16

Our Approach

!10

Erhan Leblebici, Anthony Anjorin, Andy Schürr: 
Inter-model Consistency Checking Using Triple Graph
Grammars and Linear Optimization Techniques.
FASE 2017: 191-207

Erhan Leblebici: 
Inter-Model Consistency Checking and Restoration with
Triple Graph Grammars.
PhD Thesis, Darmstadt University of Technology, Germany 2018

2017:

2018:

Nils Weidmann: 
Consistency Management via a Combination of Triple Graph
Grammars and Integer Linear Programming.
Master’s Thesis, Paderborn University, Germany 2018

2018:

Erhan Leblebici: 
Towards a Graph Grammar-Based Approach to Inter-Model
Consistency Checks with Traceability Support.
Bx@ETAPS 2016: 35-39

2016:

Basic idea of how to perform
consistency checking with TGGs

https://dblp.org/pers/hd/a/Anjorin:Anthony
https://dblp.org/pers/hd/s/Sch=uuml=rr:Andy
https://dblp.org/db/conf/fase/fase2017.html#LeblebiciAS17
https://dblp.org/db/conf/etaps/bx2016.html#Leblebici16

Our Approach

!11

Erhan Leblebici, Anthony Anjorin, Andy Schürr: 
Inter-model Consistency Checking Using Triple Graph
Grammars and Linear Optimization Techniques.
FASE 2017: 191-207

Erhan Leblebici: 
Inter-Model Consistency Checking and Restoration with
Triple Graph Grammars.
PhD Thesis, Darmstadt University of Technology, Germany 2018

2017:

2018:

Nils Weidmann: 
Consistency Management via a Combination of Triple Graph
Grammars and Integer Linear Programming.
Master’s Thesis, Paderborn University, Germany 2018

2018:

Erhan Leblebici: 
Towards a Graph Grammar-Based Approach to Inter-Model
Consistency Checks with Traceability Support.
Bx@ETAPS 2016: 35-39

2016: Full details, implementation,
and evaluation in eMoflon

https://dblp.org/pers/hd/a/Anjorin:Anthony
https://dblp.org/pers/hd/s/Sch=uuml=rr:Andy
https://dblp.org/db/conf/fase/fase2017.html#LeblebiciAS17
https://dblp.org/db/conf/etaps/bx2016.html#Leblebici16

Our Approach

!12

Erhan Leblebici, Anthony Anjorin, Andy Schürr: 
Inter-model Consistency Checking Using Triple Graph
Grammars and Linear Optimization Techniques.
FASE 2017: 191-207

Erhan Leblebici: 
Inter-Model Consistency Checking and Restoration with
Triple Graph Grammars.
PhD Thesis, Darmstadt University of Technology, Germany 2018

2017:

2018:

Nils Weidmann: 
Consistency Management via a Combination of Triple Graph
Grammars and Integer Linear Programming.
Master’s Thesis, Paderborn University, Germany 2018

2018:

Erhan Leblebici: 
Towards a Graph Grammar-Based Approach to Inter-Model
Consistency Checks with Traceability Support.
Bx@ETAPS 2016: 35-39

2016:

Remaining formal proofs,
industrial case with Siemens

https://dblp.org/pers/hd/a/Anjorin:Anthony
https://dblp.org/pers/hd/s/Sch=uuml=rr:Andy
https://dblp.org/db/conf/fase/fase2017.html#LeblebiciAS17
https://dblp.org/db/conf/etaps/bx2016.html#Leblebici16

Our Approach

!13

Erhan Leblebici, Anthony Anjorin, Andy Schürr: 
Inter-model Consistency Checking Using Triple Graph
Grammars and Linear Optimization Techniques.
FASE 2017: 191-207

Erhan Leblebici: 
Inter-Model Consistency Checking and Restoration with
Triple Graph Grammars.
PhD Thesis, Darmstadt University of Technology, Germany 2018

2017:

2018:

Nils Weidmann: 
Consistency Management via a Combination of Triple Graph
Grammars and Integer Linear Programming.
Master’s Thesis, Paderborn University, Germany 2018

2018:

Erhan Leblebici: 
Towards a Graph Grammar-Based Approach to Inter-Model
Consistency Checks with Traceability Support.
Bx@ETAPS 2016: 35-39

2016:

Generalisation of the approach to
other consistency management

tasks (work in progress)

https://dblp.org/pers/hd/a/Anjorin:Anthony
https://dblp.org/pers/hd/s/Sch=uuml=rr:Andy
https://dblp.org/db/conf/fase/fase2017.html#LeblebiciAS17
https://dblp.org/db/conf/etaps/bx2016.html#Leblebici16

Step 1: Collect all Candidates

!14

t:Task p:Person

e:Execution a:Availability

e.duration ≤ a.hours

++

t:Task p:Person

e:Execution a:Availability

e.duration ≤ a.hours

++

ar:Area r:Responsibility

p’:Person

t:Task p:Person

e:Execution a:Availability

e.duration ≤ a.hours

++

ar:Area r:Responsibility

t:Task p:Person

e:Execution a:Availability

e.duration ≤ a.hours

++

e’:Execution a’:Availability

Step 1: Collect all Candidates

!14

t:Task p:Person

e:Execution a:Availability

e.duration ≤ a.hours

++

t:Task p:Person

e:Execution a:Availability

e.duration ≤ a.hours

++

ar:Area r:Responsibility

p’:Person

t:Task p:Person

e:Execution a:Availability

e.duration ≤ a.hours

++

ar:Area r:Responsibility

t:Task p:Person

e:Execution a:Availability

e.duration ≤ a.hours

++

e’:Execution a’:Availability

Use allocation rules
(derived from a TGG) to

create all possible
correspondence links.

Step 1: Collect all Candidates

!14

t:Task p:Person

e:Execution a:Availability

e.duration ≤ a.hours

++

t:Task p:Person

e:Execution a:Availability

e.duration ≤ a.hours

++

ar:Area r:Responsibility

p’:Person

t:Task p:Person

e:Execution a:Availability

e.duration ≤ a.hours

++

ar:Area r:Responsibility

t:Task p:Person

e:Execution a:Availability

e.duration ≤ a.hours

++

e’:Execution a’:Availability

Use allocation rules
(derived from a TGG) to

create all possible
correspondence links.

Step 1: Collect all Candidates

!14

t:Task p:Person

e:Execution a:Availability

e.duration ≤ a.hours

++

t:Task p:Person

e:Execution a:Availability

e.duration ≤ a.hours

++

ar:Area r:Responsibility

p’:Person

t:Task p:Person

e:Execution a:Availability

e.duration ≤ a.hours

++

ar:Area r:Responsibility

t:Task p:Person

e:Execution a:Availability

e.duration ≤ a.hours

++

e’:Execution a’:Availability

Use allocation rules
(derived from a TGG) to

create all possible
correspondence links.

While these links are
only candidates, they

still make sense locally

Step 1: Collect all Candidates

!14

t:Task p:Person

e:Execution a:Availability

e.duration ≤ a.hours

++

t:Task p:Person

e:Execution a:Availability

e.duration ≤ a.hours

++

ar:Area r:Responsibility

p’:Person

t:Task p:Person

e:Execution a:Availability

e.duration ≤ a.hours

++

ar:Area r:Responsibility

t:Task p:Person

e:Execution a:Availability

e.duration ≤ a.hours

++

e’:Execution a’:Availability

Use allocation rules
(derived from a TGG) to

create all possible
correspondence links.

While these links are
only candidates, they

still make sense locally

This step requires a
necessary and sufficient
condition for termination!

Step 1: Collect all Candidates

!14

t:Task p:Person

e:Execution a:Availability

e.duration ≤ a.hours

++

t:Task p:Person

e:Execution a:Availability

e.duration ≤ a.hours

++

ar:Area r:Responsibility

p’:Person

t:Task p:Person

e:Execution a:Availability

e.duration ≤ a.hours

++

ar:Area r:Responsibility

t:Task p:Person

e:Execution a:Availability

e.duration ≤ a.hours

++

e’:Execution a’:Availability

Use allocation rules
(derived from a TGG) to

create all possible
correspondence links.

While these links are
only candidates, they

still make sense locally

This step exploits an
incremental graph
pattern matcher

This step requires a
necessary and sufficient
condition for termination!

Step 2: Derive ILP

!15

Step 2: Derive ILP

!15

Step 2: Derive ILP

!15

max ⃗c ⋅ ⃗x
A ⃗x ≤ ⃗b

Step 2: Derive ILP

!16

max ⃗c ⋅ ⃗x

A ⃗x ≤ ⃗b

Which candidates will
be part of the solution?

⃗x ∈ ℤn
2

Step 2: Derive ILP

!17

max ⃗c ⋅ ⃗x

A ⃗x ≤ ⃗b

Domain-specific weights
for each candidate

⃗c ∈ ℝn

Step 2: Derive ILP

!17

max ⃗c ⋅ ⃗x

A ⃗x ≤ ⃗b

Domain-specific weights
for each candidate

⃗c ∈ ℝnE.g., prefer assigning multiple
executions of the same task

to the same person

Step 2: Derive ILP

!18

max ⃗c ⋅ ⃗x

A ⃗x ≤ ⃗b

Constraints to ensure that
the chosen solution is in the

language of the TGG.

Step 2: Derive ILP

!19

max ⃗c ⋅ ⃗x

A ⃗x ≤ ⃗b

t:Task p:Person

e:Execution a:Availability

e.duration ≤ a.hours

++

e’:Execution a’:Availability

Step 2: Derive ILP

!19

max ⃗c ⋅ ⃗x

A ⃗x ≤ ⃗b

t:Task p:Person

e:Execution a:Availability

e.duration ≤ a.hours

++

e’:Execution a’:Availability

E.g, let’s assume all candidates
for creating this link are:

x1, x2, x3

Step 2: Derive ILP

!19

max ⃗c ⋅ ⃗x

A ⃗x ≤ ⃗b

t:Task p:Person

e:Execution a:Availability

e.duration ≤ a.hours

++

e’:Execution a’:Availability

E.g, let’s assume all candidates
for creating this link are:

x1, x2, x3

This candidate requires at
least one of them to exist:

x4 ⇒ x1 ∨ x2 ∨ x3
x4 ≤ x1 + x2 + x3

Step 2: Derive ILP

!19

max ⃗c ⋅ ⃗x

A ⃗x ≤ ⃗b

t:Task p:Person

e:Execution a:Availability

e.duration ≤ a.hours

++

e’:Execution a’:Availability

E.g, let’s assume all candidates
for creating this link are:

x1, x2, x3

This candidate requires at
least one of them to exist:

x4 ⇒ x1 ∨ x2 ∨ x3
x4 ≤ x1 + x2 + x3

All such inequalities are
collected to form:

A ∈ ℝm×n, b ∈ ℝn

Step 3: Solve (Optimise) ILP and Interpret Solution

!20

max ⃗c ⋅ ⃗x
A ⃗x ≤ ⃗b

⃗x *

Step 3: Solve (Optimise) ILP and Interpret Solution

!20

max ⃗c ⋅ ⃗x
A ⃗x ≤ ⃗b

⃗x *

This step exploits
mature ILP solvers

Step 3: Solve (Optimise) ILP and Interpret Solution

!21

⃗x *

Step 3: Solve (Optimise) ILP and Interpret Solution

!21

⃗x *

Step 3: Solve (Optimise) ILP and Interpret Solution

!21

⃗x *

Step 3: Solve (Optimise) ILP and Interpret Solution

!21

⃗x *

Our approach is tolerant in the
sense that we can determine
partial solutions (all variables
are set to 0 in the worst case)

Ongoing and Future Work

!22

Operation Source Corr Target

CC mark create mark

CO mark mark mark

FWD_OPT mark create create

BWD_OPT create create mark

Ongoing and Future Work

!22

Operation Source Corr Target

CC mark create mark

CO mark mark mark

FWD_OPT mark create create

BWD_OPT create create mark

Our initial focus
(Consistency Check
via correspondence

link creation)

Ongoing and Future Work

!23

Operation Source Corr Target

CC mark create mark

CO mark mark mark

FWD_OPT mark create create

BWD_OPT create create mark

Check Only:
Check existing

triple for
consistency

Ongoing and Future Work

!24

Operation Source Corr Target

CC mark create mark

CO mark mark mark

FWD_OPT mark create create

BWD_OPT create create mark

Normal initial (batch) fwd
and bwd transformations;

but now complete,
tolerant, and optimal wrt.
to an objective function

Ongoing and Future Work

!25

Operation Source Corr Target

CC mark create mark

CO mark mark mark

FWD_OPT mark create create

BWD_OPT create create mark

All definitions, proofs, and most parts of
the implementation can be formulated

generically and configured for each
case using the entries in this table!

Try it out! www.emoflon.org

!26

http://www.emoflon.org

