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Motivation

• Graph-rewriting systems are inherently non-deterministic

• When designing algorithms, need to add control structures:

• sequentialization
• conditionals
• iteration and recursion
• parallelism

• ⇒ Controlled graph rewriting [Bunke, Schürr, Habel &
Plump, Plump & Steinert, Kreowski et al.; PROGRES,
Fujaba, eMoflon]

• However, mostly I/O semantics so far, not considering:

• Concurrency in graph-rewriting algorithms
• Reactive (non-terminating) specifications
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In this paper...

• Process-algebraic (CCS-like) syntax and semantics for
controlled graph rewriting

• Transition systems both for control processes and for their
executions on graphs

• Expressiveness of our control language (encoding graph
programs by Habel & Plump)

• Handling of parallel rules and derivations by synchronization

• An abstract semantics, with graphs up to isomorphism

• Equivalence and congruence notions of CCS are reflected in
our setting
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Graph-Rewriting Actions

• DPO rules: p : (L← K → R)

• . . . Parallel composition of DPO rules:

p1|p2 : ( L1 + L2 ← K1 + K2 → R1 + R2 )

• R is the set of rule names, R∗ the set of parallel rule names
ranged over by ρ

• Actions are pairs (ρ,N) ∈ Act where ρ ∈ R∗ and N ⊆ R is a
set of non-applicability conditions
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Unmarked Processes

• Unmarked processes specify control over rule applications,
having a CCS-like syntax

Definition (Unmarked Process Term Syntax)

P,Q ::= 0 | γ.P | A | P + Q | P ||Q

where γ ranges over Act and A := P.
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Unmarked Transition System (UTS)

• The semantics of unmarked processes is an LTS where states
are processes and transitions are labeled with actions

PRE
γ.P

γ−→ P

STOP

0
X−→ 0

CHOICE
P

γ−→ P ′

P + Q
γ−→ P ′

PAR
P

γ−→ P ′

P ||Q γ−→ P ′ ||Q
REC

A := P P
α−→ P ′

A
α−→ P ′

SYNC
P

(ρ1,N1)−−−−→ P ′ Q
(ρ2,N2)−−−−→ Q ′

P ||Q (ρ1|ρ2,N1∪N2)−−−−−−−−→ P ′ ||Q ′
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Rule Applications

• G
ρ@m
==⇒ H

L Kl

G

m

D

(PO)

f

k

R

H

r

n

g

(PO)

ρ

• A linear derivation from G0 is a sequence of rule applications

G0
p1@m1
===⇒ . . .

pn@mn
====⇒ Gn with no parallel rules

• A parallel derivation from G0 is a sequence of rule applications

G0
ρ1@m1
===⇒ . . .

ρn@mn
====⇒ Gn with (potentially) parallel rules

ρi = pi1| . . . |pik
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Marked Transition System (MTS)

MARK
P

(ρ,N)−−−→ P ′ G
ρ@m
==⇒ H ∀p ∈ N : G 6 p=⇒

(P,G )
(ρ,δ,N)−−−−→M (P ′,H)

L Kδ := l

G

m

D

(PO)

f

k

R

H

r

n

g

(PO)

ρ

STOP
P

X−→ P ′

(P,G )
X−→M (P ′,G )
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Equivalence of Graph-Rewriting Processes

• A trace of a state P is a sequence of transition labels starting
from it, e.g., (ρ1, δ1,N1)(ρ2, δ2,N2) . . . (ρn, δn,Nn)

• P and Q are trace equivalent (P 'T Q) if they have the same
set of traces

• P and Q are bisimilar (P 'BS Q) if for each P
α−→M P ′, there

is Q
α−→M Q ′ such that P ′ 'BS Q ′ (and vice versa)

Proposition

For any unmarked processes P,Q and graph G ,

• P 'BS Q implies (P,G ) 'BS
M (Q,G )

• P 'T Q implies (P,G ) 'T
M (Q,G )
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Correspondence between Traces and Derivations

• Each successful trace of a marked process (P,G ) uniquely
identifies an underlying parallel derivation of R from G .

(ρ1, δ1,N1)(ρ2, δ2,N2) . . . (ρn, δn,Nn)X

• We can construct a process

PR = 0 +
∑
p∈R

p.PR

such that (PR,G ) has as successful trace each linear
derivation starting from a graph G ...

• ...and we can do the same for parallel derivations:

QR = 0 +
(
(
∑
p∈R

p.0 + ε.0) ||QR
)
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Expressiveness: Encoding Graph Programs

• Reference: a minimal control language, graph programs, being
computationally complete [Habel & Plump 2001]

• choice, sequential composition, as-long-as-possible iteration

• Graph programs can be encoded into unmarked processes,
even without using parallel composition:

• If GP = {p1, . . . , pn} is an elementary graph program, then
[[GP]] :=

∑n
i=1 pi .0.

• [[GP1;GP2]] := [[GP1]] # [[GP2]].

• [[GP ↓]] := AGP↓ ∈ K where AGP↓ := [[GP]] # AGP↓ + [̂[GP]].

where P # Q := P[Q/0] (syntactic substitution)

• [̂[GP]] is a process representing the termination criterion for
GP iteration
• defined inductively using non-applicability conditions
• successful exactly if [[GP]] fails
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Abstract MTS

• This “concrete” MTS definition is infinitely branching

Definition (Abstract Marked Transition System)

[G ] denotes the isomorphism class of graph G and [δ] the
isomorphism class of DPO diagram δ.

MARK
P

(ρ,N)−−−→ P ′ G
ρ@m
==⇒ H ∀p ∈ N : G 6 p=⇒

(P, [G ])
(ρ,[δ],N)−−−−−→A (P ′, [H])
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Abstraction Preserves Bisimilarity and Trace Equivalence

Proposition

For any unmarked processes P,Q and graphs G ,H,

• (P,G ) 'BS
M (Q,H) implies (P, [G ]) 'BS

A (Q, [H])

• (P,G ) 'T
M (Q,H) implies (P, [G ]) 'T

A (Q, [H])
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Abstract Bisimilarity is a Congruence

Given P,Q,R ∈ P with P 'BS Q.

(P + R, [G ]) 'BS
A (Q + R, [G ]),

(P ||R, [G ]) 'BS
A (Q ||R, [G ]), and

(γ.P, [G ]) 'BS
A (γ.Q, [G ]) for any γ ∈ Act

14 / 18
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Parallel Independence and Bisimulation

Let P0 := ρ1.(ρ2 ||P) + ρ2.(ρ1 ||P) and Q0 := ρ1.P || ρ2.0. There
exist parallel independent applications ρ1@m1, ρ2@m2 on G , if and
only if (P0, [G ]) 6'BS

D (Q0, [G ]).

P0

ρ1 || P

ρ2

ρ2 || P

ρ1

P

ρ2 ρ1

Q0

ρ1.P

ρ2

ρ2 || P

ρ1

P

ρ2 ρ1

ρ1 | ρ2
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Related Work

• Concurrent Semantics
• Formal notion of (concurrent) graph processes (Corradini et al.

1996, Baldan et al. 1999)

• Semantics of control:
• A denotational input/output semantics for controlled

graph-rewriting processes (Schürr 1996)
• Composable graph transformation units (Kreowski et al. 2008)
• Graph Programs, a graph programming language with an

operational semantics and results regarding computational
completeness (Plump and Habel 2001, Plump and Steinert
2009)

• Tool support: Henshin, PROGRES, eMoflon, ...
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Conclusion and Ongoing Work

• We proposed to extend graph rewriting by a process-algebraic
control layer and obtained (preserved) results from CCS theory

• The concrete MTS has too much information (and is too
strict)
• ⇒ an abstract interpretation semantics to obtain equivalences

weaker then isomorphism

• The abstract MTS cannot capture the truly concurrent
semantics of graph rewriting
• ⇒ capture independence in an asynchronous transition system
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Backup: Encoding Termination Criterion

[̂[GP]] is an inductive termination criterion:

• [̂[GP]] := (ε, {p1, . . . , pn}).0 if GP = {p1, . . . , pn} is an
elementary program;

• ̂[[GP1;GP2]] := [̂[GP1]] + [[GP1]] # [̂[GP2]];

• ̂[[GP ↓]] := (p, {p}).0, where p is any rule.
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