Graph Surfing by Reaction Systems

Hans-Jörg Kreowski and Grzegorz Rozenberg

set-based reaction systems introduced by Ehrenfeucht and Rozenberg in 2007

to model the functioning of living cells

and as a new approach to computation

Structure of animal cell CC BY-SA 4.0 Author: Royroydeb

11th International Conference on Graph Transformation +++ Toulouse +++ 25+26 June 2018

reaction enabled on state

set $\mathbf{R} \subseteq \mathbf{T}$ and $\mathbf{I} \cap \mathbf{T} = \emptyset$

graph R sub T and $I \cap T = \emptyset$ (?!)

subgraph as inhibitor is inconvenient:

for example, loop to be moved along edge but only if there is no loop on target

subgraph as inhibitor is inconvenient:

for example, loop to be moved along edge but only if there is no loop on target

(U) Universität Bremen

without forbidding source and target necessarily

reaction enabled on state

set $\mathbf{R} \subseteq \mathbf{T}$ and $\mathbf{I} \cap \mathbf{T} = \emptyset$

graph R sub T and $I \cap U(T) = (\emptyset, \emptyset)$

result of reaction on state set/graph $res_b(T) = \begin{bmatrix} P & if b & enabled & on T \\ \emptyset & otherwise \end{bmatrix}$

result of set A of reactions on state

set/graph
$$res_A(T) = \bigcup_{b \in A} res_b(T)$$

Universität Bremen

First case study

modeling a shortest path algorithm by the graph-based reaction system

SHORT(n)

(as parallel breadth first)

background graph of SHORT(n)

the complete directed graph with

nodes 1,2,...,n and

Universität Bremen

edges (i,j,*) for i,j = 1, ... ,n

where * is a special label invisible in drawings

reactions of SHORT(n) for all i, j = 1,...,n

$$(j) , (\emptyset, \{(j,j,*)\}) , j)$$

loop is moved along edge if there is no loop on target

$$(\underbrace{i} \longrightarrow \underbrace{j}, (\emptyset, \{(j, j, \star)\}), \underbrace{i} \longrightarrow \underbrace{j})$$

edge is sustained if there is no loop at target

Universität Bremen

sample sequence of states in SHORT(10)

given by a sequence of reactions

 $T_{5} =$

 $T_4 =$

Theorem

Let T_0 be a state with a single loop at node i_0 , and let T_0 , ..., T_m be a sequence of states in SHORT(n) such that $T_i = \operatorname{res}_{SHORT(n)}(T_{i-1})$ for i = 1, ..., m.

Then the node j has a loop in T_k for some k if and only if k is the length of a shortest path from i_0 to j in T_0 .

Reaction Systems

$$A = (B, A)$$

background set/graph set of reactions
result of A on state
 $res_A(T) = res_A(T)$

deterministic # maximum parallel # no conflict # nothing sustains if not (re)produced

Universität Bremen

Reaction Systems forcing sustainability

Let S sub B, and let A contain the (uninhibited) reactions

(v, (\emptyset, \emptyset) , v) for $v \in V_s$, and

(e[•], (\varnothing , \varnothing), e[•]) for $e \in E_s$.

Then $S \cap T \subseteq \operatorname{res}_A(T)$.

Second case study

modeling a finite state automaton F and its recognition of strings by the graphbased reaction system

A(F)

(using mainly the state graph)

Universität Bremen

Let $F = (Q, I, \phi, s_0, F)$ be a finite state automaton.

Then the background graph of A(F)consists of the state graph gr(F) of Fplus a run-loop at each node plus an extra node input with an x-loop for each x in I.

The reactions of
$$A(F)$$
 are:
(init $\circ 0$, (\emptyset , \emptyset), $run \circ 0$)
($run \circ s + \phi(s,x)$, (\emptyset , \emptyset), $run \circ \phi(s,x)$)
($run \circ s + x$, (\emptyset , \emptyset), $run \circ \phi(s,x)$)
($run \circ s + x$, (\emptyset , \emptyset), $run \circ s$)

plus the reactions sustaining the state graph $gr(\mathcal{F})$ up to the init-loop

Universität Bremen

(1)

(0)

11th International Conference on Graph Transformation +++ Toulouse +++ 25+26 June 2018

11th International Conference on Graph Transformation +++ Toulouse +++ 25+26 June 2018

(1)

(0)

11th International Conference on Graph Transformation +++ Toulouse +++ 25+26 June 2018

context graphs result graphs

Universität Bremen

(0)

context graphs result graphs

(2)

11th International Conference on Graph Transformation +++ Toulouse +++ 25+26 June 2018

context graphs result graphs

11th International Conference on Graph Transformation +++ Toulouse +++ 25+26 June 2018

An interactive process is a pair $\pi = (\gamma, \delta)$ where $\gamma = C_0, \ldots, C_m$ and $\delta = D_0, \ldots, D_m$ are two sequences of graphs for some m such that $D_i = \operatorname{res}_{\mathcal{A}}(C_{i-1} \cup D_{i-1})$ for $i = 1, \ldots, m$.

Universität Bremen

An interactive process is a pair

$$\pi = (\gamma, \delta)$$
 where $\gamma = C_0, \ldots, C_m$ and
 $\delta = D_0, \ldots, D_m$ are two sequences of
graphs for some m such that
 $D_i = \operatorname{res}_A(C_{i-1} \cup D_{i-1})$ for $i = 1, \ldots, m$.

γ is the context sequence of π , δ its result sequence, and $\tau = T_0, \ldots, T_m$ with $T_i = C_i \cup D_i$ for $i = 0, \ldots, m$ is its state sequence.

Universität Bremen

An interactive process is a pair

$$\pi = (\gamma, \delta)$$
 where $\gamma = C_0$, ..., C_m and
 $\delta = D_0$, ..., D_m are two sequences of
graphs for some m such that
 $D_i = \operatorname{res}_A(C_{i-1} \cup D_{i-1})$ for $i = 1, ..., m$.

π is the context-independent if $C_i \operatorname{sub} D_i$ for $i = 0, \dots, m$. In this case, $\delta = \tau$, and $\gamma = \emptyset, \dots, \emptyset$ wlog.

consider the interactive processes $\pi(x_1...x_n)$ given by context sequences of the form

 \emptyset , loop(input, x_1), ..., loop(input, x_n), \emptyset

for some n and $x_i \in \Sigma$ for i = 1, ..., n, and the state graph of \mathcal{F} as initial result graph

then the language L(A(F)) specified by A(F)contains all strings $x_1 \dots x_n$ such that the last result graph of $\pi(x_1 \dots x_n)$ has a node with a run- and a fin-loop

Universität Bremen

Third case study

modeling cellular automata that form one of the oldest paradigms of massively parallel computation with a rich stock of theory and applications

cellular automata

A cellular automaton is a system

cellular automata

cellular automata

A configuration of C is a function α : CELL \rightarrow COL such that the set of active cells $act(\alpha) = \{v \in CELL \mid \alpha(v) \neq w\}$ is finite.

Given a configuration α , one gets a uniquely determined successor configuration $\alpha' : CELL \rightarrow COL$ defined by $\alpha'(v) = \phi(\alpha(v), \alpha(N_1(v)), \ldots, \alpha(N_k(v)))$ for each $v \in CELL$.

Universität Bremen

Example

transition function:

(blue|red,c₁,...,c₆) → black in all cases (black,c₁,...,c₆) → blue if one c_i is red and the others black (black,c₁,...,c₆) → red if one c_i is blue and the others black (black,c₁,...,c₆) → black in all other cases cells: unit cubes in the Euclidean 3d space with integer coordinates neighbors: the cubes that share a side

Universität Bremen

transformation of cellular automata into graph-based reaction systems

Let $C = (COL, w, k, \phi, CELL, N)$ be a cellular automaton. Then, for each finite subset $Z \subseteq CELL$, the cells of interest, a graph-based reaction system

 $\mathcal{A}(C,\mathsf{Z}) = (\mathsf{B}(C,\mathsf{Z}) = (\mathsf{V},\mathsf{\Sigma},\mathsf{E}), \mathsf{A}(C,\mathsf{Z}))$

is defined as follows:

$$V = Z \cup \{\lambda_{i}(v) \mid v \in Z, i = 1,...,k\}, \\ \Sigma = COL \cup \{1,...,k\} \cup \{*\}, and \\ E = \{(v, \lambda_{i}(v), i) \mid v \in Z, i = 1,...,k\} \cup \\ \{(v, v, c) \mid v \in Z, c \in COL\} \cup \\ \{(v, v, w) \mid v \in V \setminus Z\}.$$

The set of reactions A(C,Z) consists of the following uninhibited reactions

Universität Bremen

product

for all $v \in Z$ and $c_0 c_k \in COL$ plus sustaining rules for the neighborhood structure of all $v \in Z$ and the w-loops of all $v \in V \setminus Z$

Let $C = (COL, w, k, \phi, CELL, N)$ be a cellular automaton and A(C, Z) be the corresponding reaction system with respect to some finite $Z \subseteq CELL$.

Let T_{lab} be a well-formed state, i.e. all nodes, all neighborhood edges as well as one loop at each node labeled due to some labeling function lab: $Z \rightarrow COL$ and w-loops at all $v \in V \setminus Z$.

Note: The successor state of a well-formed state is well-formed.

Universität Bremen

Let $C = (COL, w, k, \phi, CELL, N)$ be a cellular automaton and A(C, Z) be the corresponding reaction system with respect to some finite $Z \subseteq CELL$.

For lab: $Z \rightarrow COL$, let $\alpha(lab)$ be the configugation with $\alpha(lab)(v) = lab(v)$ for $v \in Z$ and $\alpha(lab)(v) = w$ otherwise

Let $\alpha(lab_0) = \alpha_0 \rightarrow \alpha_1 \rightarrow \dots \rightarrow \alpha_n$ be a computation in C subject to the condition $act(\alpha_i) \subseteq Z$ for $i = 1, \dots, n$.

Theorem: Then $\alpha_i = \alpha(lab_i)$ for i = 1, ..., n.

Universität Bremen

graph-based reaction systems generalize set-based ones

providing a graph-processing and visual level to the framework

the three case studies demonstrate the modeling capacity including the chance of proving correctness

most known approaches to graph transformation follow the match-cut-add-paste methodology

in contrast to this, graph-based reaction systems provide a "surfing" methodoly

surfing on the background entity yields sequences of states

this has become a favorite research topic in the set case recently

we expect this to be a very promising future research topic in the graph case because graphs offer more structure than sets

Universität Bremen

thank you for your attention

