Graph Surfing by Reaction Systems

 Hans-Jörg Kreowski and Grzegorz Rozenberg set-based reaction systems introduced by Ehrenfeucht and Rozenberg in 2007
to model the functioning of living cells
and as a new approach to computation
Structure of animal cell
CC BY-SA 4.0
Author: Royroydeb
in this paper: as a new approach to graph transformation

11th International Conference on Graph Transformation +++ Toulouse +++ 25+26 June 2018

Reaction Systems

background

set

B

$$
T \subseteq B
$$

graph

B

(U) Universität Bremen

11th International Conference on Graph Transformation +++ Toulouse +++ $25+26$ June 2018

Reaction Systems

background

 state

Reaction Systems

reaction b

reactant inhibitor product

set
$R \subseteq B$
$I \subseteq B$
$P \subseteq B$
graph
$R \operatorname{sub} B \quad I \operatorname{sub} B \quad P$ sub B

11th International Conference on Graph Transformation +++ Toulouse +++ 25+26 June 2018

Reaction Systems

reaction enabled on state

$$
\text { set } \quad R \subseteq T \text { and } I \cap T=\varnothing
$$

$$
\text { graph } R \text { sub } T \text { and } I \cap T=\varnothing \text { (?!) }
$$

(U) Universität Bremen

11th International Conference on Graph Transformation +++ Toulouse +++ $25+26$ June 2018

Reaction Systems

subgraph as inhibitor is inconvenient:

for example, loop to be moved along edge but only if there is no loop on target

reactant

inhibitor

product

Reaction Systems

subgraph as inhibitor is inconvenient:

for example, loop to be moved along edge but only if there is no loop on target

reactant

inhibitor

product
we allow to forbid an edge without forbidding source and target necessarily

Reaction Systems

reaction b

reactant inhibitor product

$$
\text { set } \quad R \subseteq B \quad I \subseteq B \quad P \subseteq B
$$

graph

(U) Universität Bremen

11th International Conference on Graph Transformation +++ Toulouse +++ $25+26$ June 2018

Reaction Systems

reaction enabled on state

set $\quad R \subseteq T$ and $I \cap T=\varnothing$

graph R sub T and $I \cap U(T)=(\varnothing, \varnothing)$

(そ) Universität Bremen
11th International Conference on Graph Transformation +++ Toulouse +++ $25+26$ June 2018

Reaction Systems

result of reaction on state

set/graph $\operatorname{res}_{b}(T)=\left\{\begin{array}{l}P \text { if } b \text { enabled on } T \\ \varnothing \text { otherwise }\end{array}\right.$

result of set \boldsymbol{A} of reactions on state

set/graph $\operatorname{res}_{A}(T)=\bigcup_{b \in A} \operatorname{res}_{b}(T)$
(U) Universität Bremen

11th International Conference on Graph Transformation +++ Toulouse +++ $25+26$ June 2018

Reaction Systems

$A=(B, A)$

background set/graph set of reactions result of \boldsymbol{A} on state

$$
\operatorname{res}_{A}(T)=\operatorname{res}_{A}(T)
$$

(そ) Universität Bremen
11th International Conference on Graph Transformation +++ Toulouse +++ $25+26$ June 2018

First case study

modeling a shortest path algorithm by the graph-based reaction system

SHORT(n)

(as parallel breadth first)

background graph of SHORT(n)

the complete directed graph with
nodes $1,2, \ldots, n$ and
edges (i, j, \star) for $i, j=1, \ldots, n$
where * is a special label invisible in drawings

reactions of $\operatorname{SHORT}(n)$ for all $i, j=1, \ldots, n$

loop is moved along edge if there is no loop on target

edge is sustained if there is no loop at target

sample sequence of states in SHORT(10)

$\mathrm{T}_{1}=$

$T_{4}=$

$T_{2}=$

11th International Conference on Graph Transformation +++ Toulouse +++ 25+26 June 2018

Theorem

Let T_{0} be a state with a single loop at node i_{0}, and let T_{0}, \ldots, T_{m} be a sequence of states in SHORT(n) such that $T_{i}=\operatorname{res}_{\text {SHORT }(n)}\left(T_{i-1}\right)$ for $i=1, \ldots, m$.

Then the node j has a loop in T_{k} for some k if and only if k is the length of a shortest path from i_{0} to j in T_{0}.

Reaction Systems

$A=(B, A)$

background set/graph set of reactions

result of A on state

$$
\operatorname{res}_{A}(T)=\operatorname{res}_{A}(T)
$$

deterministic \# maximum parallel \# no conflict

Reaction Systems

forcing sustainability

Let S sub B, and let A contain the (uninhibited) reactions

$$
\begin{aligned}
& \qquad(v,(\varnothing, \varnothing), v) \text { for } v \in V_{S} \text {, and } \\
& \quad\left(e^{\bullet},(\varnothing, \varnothing), e^{\bullet}\right) \text { for } e \in E_{S} . \\
& \text { Then } S \cap T \subseteq \operatorname{res}_{A}(T) .
\end{aligned}
$$

Second case study

modeling a finite state automaton F and its recognition of strings by the graphbased reaction system

$$
A(f)
$$

(using mainly the state graph)

11th International Conference on Graph Transformation +++ Toulouse +++ $25+26$ June 2018

Let $\mathcal{F}=\left(Q, I, \phi, s_{0}, F\right)$ be a

 finite state automaton.Then the background graph of $A(F)$ consists of the state graph $\operatorname{gr}(\mp)$ of F plus a run-loop at each node plus an extra node input with an x-loop for each x in I.

The reactions of $A(F)$ are:

plus the reactions sustaining the state graph $g r(f)$ up to the init-loop
(そ)J Universität Bremen

result graphs

(U) Universität Bremen

result graphs

(1)

(2?)

(ひ) Universität Bremen

result graphs

(1)

stable
(2?) from

(そ) Universität Bremen
11th International Conference on Graph Transformation +++ Toulouse +++ $25+26$ June 2018

result graphs

(U) Universität Bremen

context graphs
 result graphs

(0)

(そ) Universität Bremen
11th International Conference on Graph Transformation +++ Toulouse +++ 25 +26 June 2018

context graphs
 result graphs

(2)

(U) Universität Bremen

11th International Conference on Graph Transformation +++ Toulouse +++ 25 +26 June 2018

context graphs
 result graphs

(2)

(U) Universität Bremen

11th International Conference on Graph Transformation +++ Toulouse +++ 25+26 June 2018

context graphs

result graphs

(3)

(ひ) Universität Bremen
11th International Conference on Graph Transformation +++ Toulouse +++ 25 +26 June 2018

context graphs

result graphs

(3)

(ひ) Universität Bremen
11th International Conference on Graph Transformation +++ Toulouse +++ $25+26$ June 2018

context graphs

result graphs

(4)

(U) Universität Bremen

11th International Conference on Graph Transformation +++ Toulouse +++ $25+26$ June 2018

context graphs

result graphs

(ひ) Universität Bremen
11th International Conference on Graph Transformation +++ Toulouse +++ 25+26 June 2018

context graphs

result graphs

(5)

(ひ) Universität Bremen
11th International Conference on Graph Transformation +++ Toulouse +++ 25 +26 June 2018

(1)

(2)

(3)

(4)

(U) Universität Bremen

11th International Conference on Graph Transformation +++ Toulouse +++ $25+26$ June 2018

An interactive process is a pair $\pi=(\gamma, \delta)$ where $\gamma=C_{0}, \ldots, C_{m}$ and $\delta=D_{0}, \ldots, D_{m}$ are two sequences of graphs for some m such that
$D_{i}=\operatorname{res}_{A}\left(C_{i-1} \cup D_{i-1}\right)$ for $i=1, \ldots, m$.

(⿺辶) Universität Bremen
11th International Conference on Graph Transformation +++ Toulouse +++ 25+26 June 2018

An interactive process is a pair

 $\pi=(\gamma, \delta)$ where $\gamma=C_{0}, \ldots, C_{m}$ and $\delta=D_{0}, \ldots, D_{m}$ are two sequences of graphs for some m such that$D_{i}=\operatorname{res}_{A}\left(C_{i-1} \cup D_{i-1}\right)$ for $i=1, \ldots, m$.
γ is the context sequence of π,
δ its result sequence, and
$\tau=T_{0}, \ldots, T_{m}$ with $T_{i}=C_{i} \cup D_{i}$
for $i=0, \ldots, m$ is its state sequence.
(U) Universität Bremen

An interactive process is a pair $\pi=(\gamma, \delta)$ where $\gamma=C_{0}, \ldots, C_{m}$ and $\delta=D_{0}, \ldots, D_{m}$ are two sequences of graphs for some m such that
$D_{i}=\operatorname{res}_{A}\left(C_{i-1} \cup D_{i-1}\right)$ for $i=1, \ldots, m$.
π is the context-independent if
C_{i} sub D_{i} for $i=0, \ldots, m$. In this case, $\delta=\tau$, and $\gamma=\varnothing, \ldots, \varnothing$ wlog.
(そ) Universität Bremen
consider the interactive processes $\pi\left(x_{1} \ldots x_{n}\right)$ given by context sequences of the form
\varnothing,loop(input, x_{1}), \ldots, loop(input, x_{n}), \varnothing
for some n and $x_{i} \in \Sigma$ for $i=1, \ldots, n$, and the state graph of \mathcal{F} as initial result graph
then the language $L(A(F)$) specified by $A(F)$ contains all strings $x_{1} \ldots x_{n}$ such that the last result graph of $\pi\left(x_{1} \ldots x_{n}\right)$ has a node with a run- and a fin-loop

Theorem: $L(A(F))=L(F)$
(⿺) Universität Bremen

Third case study

modeling cellular automata that form one of the oldest paradigms of massively parallel computation
 with a rich stock of theory and applications

cellular automata

A cellular automaton is a system

$$
\begin{aligned}
& C=(C O L, w, k, \phi, C E L L, N) \\
& \text { finite set special neighbor- } \\
& \text { of colors default hood size } \\
& \text { color } \\
& \text { subject to the condition } \phi(w, \ldots, w)=w \\
& \text { for the default color } w \\
& \text { set of neighborhood } \\
& \text { cells } \\
& \text { specification } \\
& \text { consisting of a } \\
& \text { neighborhood } \\
& \text { function } \\
& N_{i}: \text { CELL } \rightarrow \text { CELL } \\
& \text { for each } \\
& i=1, \ldots, k
\end{aligned}
$$

cellular automata

A cellular automaton is a system
may be infinite
$C=(C O L, w, k, \phi, C E L L, N)$
finite set special neighborof colors default hood size color neighbor-
hood size transition function from COL^{k+1} to COL subject to the condition $\phi(w, \ldots, w)=w$ for the default color w
set of neighborhood cells specification consisting of a neighborhood
function
$N_{i}: C E L L \rightarrow$ CELL for each $i=1, \ldots, k$

cellular automata

A configuration of C is a function
$\alpha:$ CELL \rightarrow COL such that
the set of active cells
$\operatorname{act}(\alpha)=\{v \in C E L L \mid \alpha(v) \neq w\}$ is finite.
Given a configuration α, one gets a uniquely determined successor configuration $\alpha^{\prime}:$ CELL \rightarrow COL defined by
$\alpha^{\prime}(v)=\phi\left(\alpha(v), \alpha\left(N_{1}(v)\right), \ldots, \alpha\left(N_{k}(v)\right)\right)$ for each $v \in C E L L$.

Example

transition function:

(blue|red, c_{1}, \ldots, c_{6}) \mapsto black in all cases
(black $\left., c_{1}, \ldots, c_{6}\right) \mapsto$ blue if one c_{i} is red and the others black
(black $\left., c_{1}, \ldots, c_{6}\right) \mapsto$ red if one c_{i} is blue and the others black
(black, $\left.c_{1}, \ldots, c_{6}\right) \mapsto$ black in all other cases
cells: unit cubes in the Euclidean 3d space with integer coordinates
neighbors: the cubes that share a side

(⿺辶) Universität Bremen

[^0]
transformation of cellular automata into graph-based reaction systems

Let $C=(C O L, w, k, \phi, C E L L, N)$ be a cellular automaton.
Then, for each finite subset $Z \subseteq C E L L$, the cells of interest, a graph-based reaction system

$$
A(C, Z)=(B(C, Z)=(V, \Sigma, E), A(C, Z))
$$

is defined as follows:

$$
\begin{aligned}
V= & Z \cup\left\{N_{i}(v) \mid v \in Z, i=1 \ldots, k\right\}, \\
\Sigma= & c O L \cup\{1, \ldots, k\} \cup\{*\}, \text { and } \\
E= & \left\{\left(v, N_{i}(v), i\right) \mid v \in Z, i=1, \ldots, k\right\} \cup \\
& \{(v, v, c) \mid v \in Z, c \in c O L\} \cup \\
& \{(v, v, w) \mid v \in V \backslash Z .
\end{aligned}
$$

The set of reactions $A(C, Z)$ consists of the following uninhibited reactions

$$
\phi\left(c_{0}, \ldots, c_{k}\right)
$$

product
for all $v \in Z$ and $c_{0, \ldots, c_{k}} \in C O L$ plus sustaining rules for the neighborhood structure of all $v \in Z$ and the w-loops of all $v \in V \backslash Z$
(đ) Universität Bremen

Let $C=(C O L, w, k, \phi, C E L L, N)$ be a cellular automaton and $A(C, Z)$ be the corresponding reaction system with respect to some finite $Z \subseteq C E L L$.

Let $T_{\text {lab }}$ be a well-formed state, i.e. all nodes, all neighborhood edges as well as one loop at each node labeled due to some labeling function lab: $\mathrm{Z} \rightarrow \mathrm{COL}$ and w-loops at all $v \in V \backslash Z$.

Note: The successor state of a well-formed state is well-formed.

Let $T_{\text {labo }} \rightarrow \cdots \rightarrow T_{\text {labn }}$ be the state sequence of the context-independent process starting in some $T_{\text {lab0 }}$

11th International Conference on Graph Transformation

Let $C=(C O L, w, k, \phi, C E L L, N)$ be a cellular automaton and $A(C, Z)$ be the corresponding reaction system with respect to some finite $Z \subseteq C E L L$.

For lab: $Z \rightarrow C O L$, let $\alpha(\mathrm{lab})$ be the configugation with $\alpha(l a b)(v)=l a b(v)$ for $v \in Z$ and $\alpha(l a b)(v)=w$ otherwise

Let $\alpha\left(\mathrm{lab}_{0}\right)=\alpha_{0} \rightarrow \alpha_{1} \rightarrow \ldots \rightarrow \alpha_{n}$ be a computation in C subject to the condition $\operatorname{act}\left(\alpha_{i}\right) \subseteq Z$ for $i=1, \ldots, n$.

Theorem: Then $\alpha_{i}=\alpha\left(l a b_{i}\right)$ for $i=1, \ldots, n$.
(そ) Universität Bremen

Discussion

graph-based reaction systems generalize set-based ones
providing a graph-processing and visual level to the framework
the three case studies demonstrate the modeling capacity including the chance of proving correctness

Discussion

most known approaches to graph transformation follow the match-cut-add-paste methodology

Discussion

in contrast to this, graph-based reaction systems provide a "surfing" methodoly

Discussion

surfing on the background entity yields sequences of states
this has become a favorite research topic in the set case recently
we expect this to be a very promising future research topic in the graph case
because graphs offer more structure than sets

11th International Conference on Graph Transformation +++ Toulouse +++ 25+26 June 2018

thank you for your attention

(ひ) Universität Bremen
11th International Conference on Graph Transformation +++ Toulouse +++ $25+26$ June 2018

[^0]: 11th International Conference on Graph Transformation +++ Toulouse +++ $25+26$ June 2018

