ICGT 2018:
CoReS: A Tool for Computing Core Graphs via
SAT /SMT Solvers

Barbara Konig  Maxime Nederkorn  Dennis Nolte
University of Duisburg-Essen

25.06.2018



Motivation

Aim
Analyse the behaviour and verify the correctness of dynamically
evolving systems.



Motivation

Aim
Analyse the behaviour and verify the correctness of dynamically
evolving systems.

Graph transformation systems are well suited to model:
e Concurrent systems
Infinite state spaces

o
@ Dynamic creation and deletion of objects
@ Variable topologies

o



Motivation

Aim
Analyse the behaviour and verify the correctness of dynamically
evolving systems.

Graph transformation systems are well suited to model:
e Concurrent systems

Infinite state spaces

o
@ Dynamic creation and deletion of objects
@ Variable topologies

o

Trade-off: More complex modeling language ~~ harder analysis.



Overview
In this Talk

Specify (possibly infinite) sets of graphs by finite graphs and
compute their corresponding minimal representation.



Overview
In this Talk

Specify (possibly infinite) sets of graphs by finite graphs and
compute their corresponding minimal representation.

Solving a subtask from our predecessor paper (ICGT 2017)



Contents

Background and Preliminaries (Exposition)
@ Specifying Graph Languages using Type Graphs
@ Retracts and Cores

Core Computation via SAT/SMT Encodings (Rising Action)
@ Retract Morphism Properties

@ Core Computation Encodings

CoReS (Peripety)
@ Tool Demo

@ Runtime Results

Final Remarks (Dénouement)



Part |

Background and Preliminaries



The Basic Framework of Type Graphs

We started by studying type graphs as a specification language.

Type Graph Language

Given a graph T, the language of T consists of all graphs that can
be mapped homomorphically into T:

L(T) = {G | there exists a morphism ¢: G — T}



The Basic Framework of Type Graphs

We started by studying type graphs as a specification language.

Type Graph Language

Given a graph T, the language of T consists of all graphs that can
be mapped homomorphically into T:

L(T) = {G | there exists a morphism ¢: G — T}



The Basic Framework of Type Graphs

We started by studying type graphs as a specification language.

Type Graph Language

Given a graph T, the language of T consists of all graphs that can
be mapped homomorphically into T:

L(T) = {G | there exists a morphism ¢: G — T}

Why study Type Graphs?
@ They are simple.
@ Other formalisms are based on type graphs (e.g., abstract
graphs that use type graphs with additional annotations)
@ Refine/Extend this basic formalism and analyse the properties.



The Basic Framework of Type Graphs

We started by studying type graphs as a specification language.

Type Graph Language

Given a graph T, the language of T consists of all graphs that can
be mapped homomorphically into T:

L(T) = {G | there exists a morphism ¢: G — T}

Why study Type Graphs?
@ They are simple.
@ Other formalisms are based on type graphs (e.g., abstract
graphs that use type graphs with additional annotations)
@ Refine/Extend this basic formalism and analyse the properties.
Today's aim:
Efficiently minimize the type graph without changing its language.



Minimization




Minimization




Minimization




Minimization




Minimization
Among all type graphs that generate the same language

(equivalence class of the homomorphism preorder), one is a
subgraph of all the others. This graph is called the core.



Minimization
Among all type graphs that generate the same language

(equivalence class of the homomorphism preorder), one is a
subgraph of all the others. This graph is called the core.

Retracts and Core Graphs

A subgraph T’ of a graph T for which there exists a morphism
©: T — T is called a retract of T.

If a graph has no proper retracts itself, it is called core graph.
(Nesetfil, Tardif).



Minimization
Among all type graphs that generate the same language

(equivalence class of the homomorphism preorder), one is a
subgraph of all the others. This graph is called the core.

Retracts and Core Graphs

A subgraph T’ of a graph T for which there exists a morphism
©: T — T is called a retract of T.

If a graph has no proper retracts itself, it is called core graph.
(Nesetfil, Tardif).

A A A
A%% 8 AE%B
H <7
B B B

Core



Invariant Checking

Let 7 be a graph and core(T) be its core.

Closure under rewriting
L(T) is closed under application of p <«
P

L<——R

VtL\ 7 3tg
\_/

core(T)



Invariant Checking

Let 7 be a graph and core(T) be its core.

Closure under rewriting
L(T) is closed under application of p <«
P

L<——R

VtL\ 7 3tg
K

core(T)

’ Question: How can we efficiently compute the core graph?




Part Il

Core Computation
via SAT /SMT Encodings



The Problem

Core computation is NP-hard!



The Problem

Core computation is NP-hard!

Reason: Checking whether there exists a morphism into v is
equivalent to checking 3-colourability.

G is 3-colourable <= core(G LﬂV) = v



The Problem

Core computation is NP-hard!

Reason: Checking whether there exists a morphism into v is
equivalent to checking 3-colourability.

G is 3-colourable <= core(G LﬂV) = v

’ Question: Given a graph G, does G contain a retract H? ‘




The Problem

Core computation is NP-hard!

Reason: Checking whether there exists a morphism into v is
equivalent to checking 3-colourability.

G is 3-colourable <= core(G LﬂV) = v

’ Question: Given a graph G, does G contain a retract H? ‘

Retract Morphism Problem

Given a graph G. Does there exist a non-surjective endomorphism
5&‘/2 G — G with QI‘H = IdH where H = Img(p’)'?



SMT Solver

Satisfiability modulo theories (SMT) problem is a decision problem
for logical formulas with respect to combinations of background
theories expressed in classical first-order logic.



SMT Solver

Satisfiability modulo theories (SMT) problem is a decision problem
for logical formulas with respect to combinations of background
theories expressed in classical first-order logic.
SMT solvers are useful for

@ Verification

@ Correctness proofs of programs

@ Software testing based on symbolic execution



SMT Solver

Satisfiability modulo theories (SMT) problem is a decision problem
for logical formulas with respect to combinations of background
theories expressed in classical first-order logic.
SMT solvers are useful for

@ Verification

@ Correctness proofs of programs

@ Software testing based on symbolic execution

We are using the SMT-LIB2 standard ~~ prefix notation.



SMT Solver

Satisfiability modulo theories (SMT) problem is a decision problem
for logical formulas with respect to combinations of background
theories expressed in classical first-order logic.
SMT solvers are useful for

@ Verification

@ Correctness proofs of programs

@ Software testing based on symbolic execution
We are using the SMT-LIB2 standard ~~ prefix notation.

Example

(declare-const x Int) | x,y € Int
(declare-const y Int)

(assert(= (=xy) (+x(=¥) 1)) [x—y=x—y+1
(check-sat)



Core Computation in a Nutshell

Input Graph



Core Computation in a Nutshell

Input Graph
Retract Morphism
Problem Reduction

SAT/SMT
Encoding




Core Computation in a Nutshell

Input Graph

Retract Morphism
Problem Reduction

[

SAT/SMT
Encoding

J

Input

SAT/SMT
Solver




Core Computation in a Nutshell

Input Graph
Retract Morphism
Problem Reduction

Satisfiable?

SAT/SMT

Encoding

Input

Output | SAT/SMT
%

Solver




Core Computation in a Nutshell

Input Graph

Satisfiable?

etract Morphism
Problem Reduction

g

Output

[

SAT/SMT
Encoding

J

Input

SAT/SMT
Solver




Core Computation in a Nutshell

Input Graph
Retract Morphism
Problem Reduction
Retract SAT/SMT
Morphism Encoding

Parse
Model Input

Output | SAT/SMT
b

o .
Satisfiable? Solver




Core Computation in a Nutshell
Retract Morphism

Input Graph
Problem Reduction
Retract Image R SAT/SMT
Morphism etract Encoding

Parse
Satisfiable?

Model Input

Output | SAT/SMT
<
Solver




Core Computation in a Nutshell

Input Graph
Set

Retract Image R
Morphism 2dElas

Parse
Model

Output

Satisfiable? ><——

Retract Morphism
Problem Reduction

g

[

SAT/SMT
Encoding

J

Input

SAT/SMT
Solver




Core Computation in a Nutshell

Input Graph
Set

Retract Image R
Morphism S

Parse
Model

Satisfiable?

Retract Morphism
Problem Reduction

Output

g

[

SAT/SMT
Encoding

J

Input

SAT/SMT
Solver




Core Computation in a Nutshell

Input Graph
Set

Retract Image R
Morphism S

Parse
Model

Satisfiable?

Retract Morphism
Problem Reduction

Output

g

[

SAT/SMT
Encoding

J

Input

SAT/SMT
Solver




Retract Morphism Properties

For an input graph G = (V| E, src, tgt, lab), the encoding of ¢
needs to satisfy the following three conditions:



Retract Morphism Properties

For an input graph G = (V| E, src, tgt, lab), the encoding of ¢
needs to satisfy the following three conditions:

1) Graph morphism property:

The morphism ¢ needs to be structure preserving, i.e.

src(pe(e)) = pv(src(e))  tgt(pe(e)) = pv(tgt(e)) lab(ve(e)) = lab(e)



Retract Morphism Properties

For an input graph G = (V| E, src, tgt, lab), the encoding of ¢
needs to satisfy the following three conditions:

1) Graph morphism property:
The morphism ¢ needs to be structure preserving, i.e.

sre(ve(e)) = pv(sre(e))  tat(ve(e)) = pv(tgt(e))  lab(pe(e)) = lab(e)

2) Subgraph property:
The morphism ¢ needs to be a non-surjective endomorphism, i.e.

dom(p) = cod(y) dve V:v¢img(yp)



Retract Morphism Properties

For an input graph G = (V| E, src, tgt, lab), the encoding of ¢
needs to satisfy the following three conditions:

1) Graph morphism property:
The morphism ¢ needs to be structure preserving, i.e.

src(pe(e)) = pv(src(e))  tgt(pe(e)) = pv(tgt(e)) lab(ve(e)) = lab(e)

2) Subgraph property:
The morphism ¢ needs to be a non-surjective endomorphism, i.e.

dom(p) = cod(y) dve V:v¢img(yp)

3) Retract property:
The morphism ¢ restricted on its image is an identity morphism, i.e.

Plimg(p) = idimg(y)



SMT-LIB2 Encoding of Retract Morphism Properties

Initialize the components of the input G = (V. E, src, tgt, lab):

(declare-datatypes () (V vl ... vN))) | (V ={vi,....vy})
(declare-datatypes () ((Eel ... eM))) | (E ={ei.....en})
(declare-datatypes () ((L A ...))) | (AN={A,...})
(declare-fun src (E) V) |src: E — V
(declare-fun tgt (E) V) | tgt: E— V

(

declare-fun lab (E) L) |lab: E — X



SMT-LIB2 Encoding of Retract Morphism Properties

Initialize the components of the input G = (V. E, src, tgt, lab):
(declare-datatypes () (V vl ... vN))) | (V ={vi,....vy})

(declare-datatypes () ((Eel ... eM))) | (E ={ei.....en})
(declare-datatypes () ((L A ...))) | (AN={A,...})
(declare-fun src (E) V) |src: E — V
(declare-fun tgt (E) V) | tgt: E— V
(declare-fun lab (E) L) | lab: E — X
For instance the graph O—><2> can be encoded in the following way:
(assert (= (src el) v1)) | src(er) = v
(assert (= (tgt el) v2)) | tgt(e1) = wvo
(assert (= (lab el) A)) | lab(e1) = A



SMT-LIB2 Encoding of Retract Morphism Properties

Next, we specify the constraints for the morphism ¢: G — G:

1) Graph morphism property

(declare-fun vphi (V) V) loy: V=V

(declare-fun ephi (E) E) |oe: E— E

(assert (forall ((eE)) (= (src(ephie)) (vphi(srce))))) |src(pe(e)) = pv(src(e))
(assert (forall (e E)) (= (tgt (ephie)) (vphi(tgte))))) |tgt(ve(e)) = pv(tgt(e))
(assert (forall ((e E)) (= (lab (ephie)) (labe)))) | lab(¢E(e)) = lab(e)



SMT-LIB2 Encoding of Retract Morphism Properties

Next, we specify the constraints for the morphism ¢: G — G:

1) Graph morphism property

(declare-fun vphi (V) V) loy: V=V

(declare-fun ephi (E) E) |oe: E— E

(assert (forall ((eE)) (= (src(ephie)) (vphi(srce))))) |src(pe(e)) = pv(src(e))
(assert (forall (e E)) (= (tgt (ephie)) (vphi(tgte))))) |tgt(ve(e)) = pv(tgt(e))
(assert (forall ((e E)) (= (lab (ephie)) (labe)))) | lab(¢E(e)) = lab(e)

2) Subgraph property

(assert (exists ((v1V)) not(exists ((v2V)) (= vl (vphiv2))))) [Ivi € V-dw € V:

vi = py(w)



SMT-LIB2 Encoding of Retract Morphism Properties

We need to specify that the retract property ¢|;,,(,) = id

holds. We rephrase this requirement in the following way:

img(¢)

Vx € G((Hy € G (o(y) =x)) = ¢(x) :x>

Every element in the image of ¢ is part of the retract and therefore
always has to be mapped to itself.



SMT-LIB2 Encoding of Retract Morphism Properties

We need to specify that the retract property ¢|;,,(,) = id

holds. We rephrase this requirement in the following way:

img(¢)

Vx € G((Hy € G (o(y) =x)) = ¢(x) :x>

Every element in the image of ¢ is part of the retract and therefore
always has to be mapped to itself.

3) Retract property

(assert (forall ((v1V)) (=> (exists ((v2V)) (= v1(vphiv2))) (= vl (vphivl)))))
(assert (forall ((e1 E)) (=> (exists ((e2E)) (= el (ephie2))) (= el (ephiel)))))



Example Graph



<

o

«F

Q>



SAT Encoding of Retract Morphism Properties

The SAT encoding is more tedious to achieve.



SAT Encoding of Retract Morphism Properties

The SAT encoding is more tedious to achieve.

Remove parallel edges from the type graph in a preprocessing step
~+ Find a node mapping describing the retract since the
corresponding edge mappings can be derived from it.



SAT Encoding of Retract Morphism Properties
The SAT encoding is more tedious to achieve.

Remove parallel edges from the type graph in a preprocessing step
~+ Find a node mapping describing the retract since the
corresponding edge mappings can be derived from it.

Our set of atomic propositions A has size |A| = |V x V|.

For a pair of nodes (x,y) € V x V we use Ax-y with

A S Ax-y = true iff o/ (x) = y holds.



SAT Encoding of Retract Morphism Properties

The SAT encoding is more tedious to achieve.

Remove parallel edges from the type graph in a preprocessing step
~+ Find a node mapping describing the retract since the
corresponding edge mappings can be derived from it.

Our set of atomic propositions A has size |A| = |V x V|.

For a pair of nodes (x,y) € V x V we use Ax-y with

A S Ax-y = true iff oy (x) = y holds.

The node mapping must be a function.



SAT Encoding of Retract Morphism Properties
The SAT encoding is more tedious to achieve.

Remove parallel edges from the type graph in a preprocessing step
~+ Find a node mapping describing the retract since the
corresponding edge mappings can be derived from it.

Our set of atomic propositions A has size |A| = |V x V|.

For a pair of nodes (x,y) € V x V we use Ax-y with

A S Ax-y = true iff oy (x) = y holds.

The node mapping must be a function.

Additional requirement

Nsev \/yev<Ax—y/\ (/\zeV\{y} —|Ax—z)) | Vx3ly pv(x) =y



SAT Encoding of Retract Morphism Properties

1) Graph morphism property

/\ \/ (Asrc )-src(€')) A (Atgt(e )tgt(e’)))

ecE e EElab( )

2) Subgraph property

V (A ~av=) 3xVy o(y) # x

xeV yeV

3) Retract property

/\ (( \/ Ay-x) = AX'X> | o1 = idH

xeV yeV



SAT Encoding of Retract Morphism Properties

1) Graph morphism property

/\ \/ (Asrc )-src(€')) A (Atgt(e )tgt(e’)))

ecE e EElab( )

2) Subgraph property

V (A ~av=) [3xVy o(y) # x

xeV yeV

3) Retract property
/\ (( \/ Ay-x) = Ax—x) ||y = idy
xeV yeV

The derivation of the formulas above is given in our paper.



Part Il

CoReS

(Computation of Retracts encoded SAT/SMT)



<

o

«F

Q>



Experiments

The encodings were tested on 125 random graphs consisting of

@ a fixed number of nodes |V/|.

@ a fixed number of available edge labels |A|.

@ a fixed probability p for an edge to exist.

SAT (Limboole) vs SMT (Z3)

p-IVI-IA]
05 0.8 1.0 1.2 15
V[ |\ | SAT SMT | SAT SMT | SAT SMT | SAT SMT | SAT SMT
1 | 075 116 | 078 344 | 078 733 | 071 1.17 | 070 3.1
16 2 | 067 .155 | 096 .463 | 080 1.12 | 079 211 | 078 4.21
3 |.063 .172 | 100 548 | .074 1.14 | 071 2.02 | .073 4.09
1 | 301 620 | 306 458 | 396 124 | 424 27.4 | 500 67.5
32 2 |.380 1.08 |.407 727 | 415 149 | 447 376 | 450 121
3 132 152 |.383 527 | 365 193 |.301 403 | .382 110




Final Remarks

Contribution:

@ Investigation of encodings for core computations:
Analysis and encoding of needed properties in SAT/SMT.

@ Benchmarks:
Trade-off between readability and performance.

Tool support:
@ CoReS:
Automatically compute core graphs via SAT/SMT encodings.

Features:
@ GUI mode for visualized core computations.
@ Integrable and executable standalone command line interface.

@ User-manual and source code (Python) available on GitHub:
https://github.com/mnederkorn/CoReS


https://github.com/mnederkorn/CoReS

Jhank You

for your attention



<

o

«F

Q>



Part IV

Additional Material



Invariant checking

Closure under Rewriting

Question: Given T and a (DPO) GTS rule r = (L <~ | — R).
Does Post((L(T)) € L(T) hold?



Invariant checking

Closure under Rewriting

Question: Given T and a (DPO) GTS rule r = (L <~ | — R).
Does Post((L(T)) € L(T) hold?

Post,1(£(T)) can not be computed...



Invariant checking

Closure under Rewriting

Question: Given T and a (DPO) GTS rule r = (L <~ | — R).
Does Post((L(T)) € L(T) hold?

Post,1(£(T)) can not be computed...

Sufficient condition: Check whether for each morphism L — T
there exists a morphism R — T such that the diagram below
commutes. This implies closure under rewriting.

L+———R

/
7/
/
¥

T



The missing piece

This is not an if-and-only-if condition. Counterexample:

A B
1 2

Oo—»0 (@] (@]
1 2¢—1 22—
/
\ A //
/
Q_A%Z
B

However, the type graph represents all graphs with A- and
B-labelled edges and is hence closed under rewriting.



The missing piece

This is not an if-and-only-if condition. Counterexample:

A B
1 2

Oo—»0 (@] (@]
1 2¢—1 22—
/
\ A //
/
Q_A%Z
B

However, the type graph represents all graphs with A- and
B-labelled edges and is hence closed under rewriting.

Solution: We obtain an if-and-only-if condition if we require that
the type graph T is a core!



Experiments

Additional SAT runtimes

VI |

0.5

0.6

0.7

0.8

p-[VI-IA|

0.9

1.0

1.1

1.2

13

1.4

15

24

462
.337
410

.595
.356
401

.309
.548
1.00

.333
.587
460

.351
1.29
.456

.359
.623
871

.388
.685
450

476
.685
490

371
511
1.60

.589
.739
.615

.354
497
574

32

.619
.683
1.13

.828
.809
1.01

901
792
.821

1.17
.988
.819

111
1.03
1.16

.85
1.27
.937

973
1.04
1.10

1.29
1.13
1.05

.986
1.23
1.87

1.01
1.22
1.27

1.53
1.23
1.20

48

2.39
1.83
2.35

2.62
1.83
2.57

3.27
3.23
3.06

3.15
3.68
3.25

4.45
3.97
3.59

5.18
3.98
3.94

5.34
4.75
3.88

7.18
5.47
4.17

5.01
4.98
4.28

5.93
5.02
5.33

6.24
5.37
4.96

64

6.63
4.04
4.53

8.65
501
5.60

12.0
6.73
7.22

12.7
10.9
8.96

19.4
10.3
9.02

21.9
14.9
11.0

21.2
15.2
10.6

26.2
15.2
12.0

225
15.4
12.7

221
15.7
11.9

26.0
18.4
12.1

96

WNNEFEWNRFEFWNRFEWNRWN = >

37.5
28.6
23.7

49.8
49.9
36.7

92.8
59.7
50.4

125
85.5
60.6

123
98.9
52.0

165
102
51.8

140
107
48.8

163
115
52.6

193
127
49.0

152
111
44.0

194
116
46.6




	Overview
	Background and Preliminaries
	Background and Preliminaries

	Core Computation via SAT/SMT Encodings
	Core Computation via SAT/SMT Encodings

	CoReS (Computation of Retracts encoded SAT/SMT)
	CoReS (Computation of Retracts encoded SAT/SMT)
	Final Remarks

	*
	*


