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Trade-off: More complex modeling language ~~ harder analysis.
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The Basic Framework of Type Graphs

We started by studying type graphs as a specification language.

Type Graph Language

Given a graph T, the language of T consists of all graphs that can
be mapped homomorphically into T:

L(T) = {G | there exists a morphism ¢: G — T}

Why study Type Graphs?
@ They are simple.
@ Other formalisms are based on type graphs (e.g., abstract
graphs that use type graphs with additional annotations)
@ Refine/Extend this basic formalism and analyse the properties.
Today's aim:
Efficiently minimize the type graph without changing its language.
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Among all type graphs that generate the same language

(equivalence class of the homomorphism preorder), one is a
subgraph of all the others. This graph is called the core.

Retracts and Core Graphs

A subgraph T’ of a graph T for which there exists a morphism
©: T — T is called a retract of T.

If a graph has no proper retracts itself, it is called core graph.
(Nesetfil, Tardif).
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Invariant Checking

Let 7 be a graph and core(T) be its core.

Closure under rewriting
L(T) is closed under application of p <«
P

L<——R

VtL\ 7 3tg
K

core(T)

’ Question: How can we efficiently compute the core graph?
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The Problem

Core computation is NP-hard!

Reason: Checking whether there exists a morphism into v is
equivalent to checking 3-colourability.

G is 3-colourable <= core(G LﬂV) = v

’ Question: Given a graph G, does G contain a retract H? ‘

Retract Morphism Problem

Given a graph G. Does there exist a non-surjective endomorphism
5&‘/2 G — G with QI‘H = IdH where H = Img(p’)'?
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SMT Solver

Satisfiability modulo theories (SMT) problem is a decision problem
for logical formulas with respect to combinations of background
theories expressed in classical first-order logic.
SMT solvers are useful for

@ Verification

@ Correctness proofs of programs

@ Software testing based on symbolic execution
We are using the SMT-LIB2 standard ~~ prefix notation.

Example

(declare-const x Int) | x,y € Int
(declare-const y Int)

(assert(= (=xy) (+x(=¥) 1)) [x—y=x—y+1
(check-sat)
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Retract Morphism Properties

For an input graph G = (V| E, src, tgt, lab), the encoding of ¢
needs to satisfy the following three conditions:

1) Graph morphism property:
The morphism ¢ needs to be structure preserving, i.e.

src(pe(e)) = pv(src(e))  tgt(pe(e)) = pv(tgt(e)) lab(ve(e)) = lab(e)

2) Subgraph property:
The morphism ¢ needs to be a non-surjective endomorphism, i.e.

dom(p) = cod(y) dve V:v¢img(yp)

3) Retract property:
The morphism ¢ restricted on its image is an identity morphism, i.e.

Plimg(p) = idimg(y)
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SMT-LIB2 Encoding of Retract Morphism Properties

Initialize the components of the input G = (V. E, src, tgt, lab):
(declare-datatypes () (V vl ... vN))) | (V ={vi,....vy})

(declare-datatypes () ((Eel ... eM))) | (E ={ei.....en})
(declare-datatypes () ((L A ...))) | (AN={A,...})
(declare-fun src (E) V) |src: E — V
(declare-fun tgt (E) V) | tgt: E— V
(declare-fun lab (E) L) | lab: E — X
For instance the graph O—><2> can be encoded in the following way:
(assert (= (src el) v1)) | src(er) = v
(assert (= (tgt el) v2)) | tgt(e1) = wvo
(assert (= (lab el) A)) | lab(e1) = A
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SMT-LIB2 Encoding of Retract Morphism Properties

Next, we specify the constraints for the morphism ¢: G — G:

1) Graph morphism property

(declare-fun vphi (V) V) loy: V=V

(declare-fun ephi (E) E) |oe: E— E

(assert (forall ((eE)) (= (src(ephie)) (vphi(srce))))) |src(pe(e)) = pv(src(e))
(assert (forall (e E)) (= (tgt (ephie)) (vphi(tgte))))) |tgt(ve(e)) = pv(tgt(e))
(assert (forall ((e E)) (= (lab (ephie)) (labe)))) | lab(¢E(e)) = lab(e)

2) Subgraph property

(assert (exists ((v1V)) not(exists ((v2V)) (= vl (vphiv2))))) [Ivi € V-dw € V:

vi = py(w)
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SMT-LIB2 Encoding of Retract Morphism Properties

We need to specify that the retract property ¢|;,,(,) = id

holds. We rephrase this requirement in the following way:

img(¢)

Vx € G((Hy € G (o(y) =x)) = ¢(x) :x>

Every element in the image of ¢ is part of the retract and therefore
always has to be mapped to itself.

3) Retract property

(assert (forall ((v1V)) (=> (exists ((v2V)) (= v1(vphiv2))) (= vl (vphivl)))))
(assert (forall ((e1 E)) (=> (exists ((e2E)) (= el (ephie2))) (= el (ephiel)))))



Example Graph
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SAT Encoding of Retract Morphism Properties
The SAT encoding is more tedious to achieve.

Remove parallel edges from the type graph in a preprocessing step
~+ Find a node mapping describing the retract since the
corresponding edge mappings can be derived from it.

Our set of atomic propositions A has size |A| = |V x V|.

For a pair of nodes (x,y) € V x V we use Ax-y with

A S Ax-y = true iff oy (x) = y holds.

The node mapping must be a function.

Additional requirement

Nsev \/yev<Ax—y/\ (/\zeV\{y} —|Ax—z)) | Vx3ly pv(x) =y



SAT Encoding of Retract Morphism Properties
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SAT Encoding of Retract Morphism Properties

1) Graph morphism property

/\ \/ (Asrc )-src(€')) A (Atgt(e )tgt(e’)))

ecE e EElab( )

2) Subgraph property

V (A ~av=) [3xVy o(y) # x

xeV yeV

3) Retract property
/\ (( \/ Ay-x) = Ax—x) ||y = idy
xeV yeV

The derivation of the formulas above is given in our paper.
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CoReS

(Computation of Retracts encoded SAT/SMT)
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Experiments

The encodings were tested on 125 random graphs consisting of

@ a fixed number of nodes |V/|.

@ a fixed number of available edge labels |A|.

@ a fixed probability p for an edge to exist.

SAT (Limboole) vs SMT (Z3)

p-IVI-IA]
05 0.8 1.0 1.2 15
V[ |\ | SAT SMT | SAT SMT | SAT SMT | SAT SMT | SAT SMT
1 | 075 116 | 078 344 | 078 733 | 071 1.17 | 070 3.1
16 2 | 067 .155 | 096 .463 | 080 1.12 | 079 211 | 078 4.21
3 |.063 .172 | 100 548 | .074 1.14 | 071 2.02 | .073 4.09
1 | 301 620 | 306 458 | 396 124 | 424 27.4 | 500 67.5
32 2 |.380 1.08 |.407 727 | 415 149 | 447 376 | 450 121
3 132 152 |.383 527 | 365 193 |.301 403 | .382 110




Final Remarks

Contribution:

@ Investigation of encodings for core computations:
Analysis and encoding of needed properties in SAT/SMT.

@ Benchmarks:
Trade-off between readability and performance.

Tool support:
@ CoReS:
Automatically compute core graphs via SAT/SMT encodings.

Features:
@ GUI mode for visualized core computations.
@ Integrable and executable standalone command line interface.

@ User-manual and source code (Python) available on GitHub:
https://github.com/mnederkorn/CoReS


https://github.com/mnederkorn/CoReS

Jhank You

for your attention
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Invariant checking

Closure under Rewriting

Question: Given T and a (DPO) GTS rule r = (L <~ | — R).
Does Post((L(T)) € L(T) hold?

Post,1(£(T)) can not be computed...

Sufficient condition: Check whether for each morphism L — T
there exists a morphism R — T such that the diagram below
commutes. This implies closure under rewriting.

L+———R

/
7/
/
¥

T



The missing piece

This is not an if-and-only-if condition. Counterexample:

A B
1 2

Oo—»0 (@] (@]
1 2¢—1 22—
/
\ A //
/
Q_A%Z
B

However, the type graph represents all graphs with A- and
B-labelled edges and is hence closed under rewriting.



The missing piece

This is not an if-and-only-if condition. Counterexample:

A B
1 2

Oo—»0 (@] (@]
1 2¢—1 22—
/
\ A //
/
Q_A%Z
B

However, the type graph represents all graphs with A- and
B-labelled edges and is hence closed under rewriting.

Solution: We obtain an if-and-only-if condition if we require that
the type graph T is a core!



Experiments

Additional SAT runtimes
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