
ICGT 2018:
CoReS: A Tool for Computing Core Graphs via

SAT/SMT Solvers

Barbara König Maxime Nederkorn Dennis Nolte

University of Duisburg-Essen

25.06.2018

Motivation

Aim

Analyse the behaviour and verify the correctness of dynamically
evolving systems.

Graph transformation systems are well suited to model:

Concurrent systems

Infinite state spaces

Dynamic creation and deletion of objects

Variable topologies

. . .

Trade-off: More complex modeling language harder analysis.

Motivation

Aim

Analyse the behaviour and verify the correctness of dynamically
evolving systems.

Graph transformation systems are well suited to model:

Concurrent systems

Infinite state spaces

Dynamic creation and deletion of objects

Variable topologies

. . .

Trade-off: More complex modeling language harder analysis.

Motivation

Aim

Analyse the behaviour and verify the correctness of dynamically
evolving systems.

Graph transformation systems are well suited to model:

Concurrent systems

Infinite state spaces

Dynamic creation and deletion of objects

Variable topologies

. . .

Trade-off: More complex modeling language harder analysis.

Overview

In this Talk
Specify (possibly infinite) sets of graphs by finite graphs and
compute their corresponding minimal representation.

. . .

A

C B

A

A

A

Solving a subtask from our predecessor paper (ICGT 2017)

Overview

In this Talk
Specify (possibly infinite) sets of graphs by finite graphs and
compute their corresponding minimal representation.

. . .

A

C B

A

A

A

Solving a subtask from our predecessor paper (ICGT 2017)

Contents

Background and Preliminaries (Exposition)

Specifying Graph Languages using Type Graphs

Retracts and Cores

Core Computation via SAT/SMT Encodings (Rising Action)

Retract Morphism Properties

Core Computation Encodings

CoReS (Peripety)

Tool Demo

Runtime Results

Final Remarks (Dénouement)

Part I

Background and Preliminaries

The Basic Framework of Type Graphs

We started by studying type graphs as a specification language.

Type Graph Language

Given a graph T , the language of T consists of all graphs that can
be mapped homomorphically into T :

L(T) = {G | there exists a morphism ϕ : G → T}

Why study Type Graphs?

They are simple.
Other formalisms are based on type graphs (e.g., abstract
graphs that use type graphs with additional annotations)
Refine/Extend this basic formalism and analyse the properties.

Today’s aim:
Efficiently minimize the type graph without changing its language.

The Basic Framework of Type Graphs

We started by studying type graphs as a specification language.

Type Graph Language

Given a graph T , the language of T consists of all graphs that can
be mapped homomorphically into T :

L(T) = {G | there exists a morphism ϕ : G → T}

A
A

A A

) =L(

A

A

. . .

AA

A∅

Why study Type Graphs?

They are simple.
Other formalisms are based on type graphs (e.g., abstract
graphs that use type graphs with additional annotations)
Refine/Extend this basic formalism and analyse the properties.

Today’s aim:
Efficiently minimize the type graph without changing its language.

The Basic Framework of Type Graphs

We started by studying type graphs as a specification language.

Type Graph Language

Given a graph T , the language of T consists of all graphs that can
be mapped homomorphically into T :

L(T) = {G | there exists a morphism ϕ : G → T}

Why study Type Graphs?

They are simple.
Other formalisms are based on type graphs (e.g., abstract
graphs that use type graphs with additional annotations)
Refine/Extend this basic formalism and analyse the properties.

Today’s aim:
Efficiently minimize the type graph without changing its language.

The Basic Framework of Type Graphs

We started by studying type graphs as a specification language.

Type Graph Language

Given a graph T , the language of T consists of all graphs that can
be mapped homomorphically into T :

L(T) = {G | there exists a morphism ϕ : G → T}

Why study Type Graphs?

They are simple.
Other formalisms are based on type graphs (e.g., abstract
graphs that use type graphs with additional annotations)
Refine/Extend this basic formalism and analyse the properties.

Today’s aim:
Efficiently minimize the type graph without changing its language.

Minimization

B B

B

C
C

C

A

A

B

B

A

B

B

A C

=

L()

L()

Minimization

B B

B

C
C

C

A

A

B

B

A

B

B

A C

=

L()

L()

Minimization

B B

B

C
C

C

A

A

B

B

A

B

B

A C

=

L()

L()

Minimization

B B

B

C
C

C

A

A

B

B

A

B

B

A C

=

L()

L()

B

C

A

Minimization

Among all type graphs that generate the same language
(equivalence class of the homomorphism preorder), one is a
subgraph of all the others. This graph is called the core.

Retracts and Core Graphs

A subgraph T ′ of a graph T for which there exists a morphism
ϕ : T → T ′ is called a retract of T .

If a graph has no proper retracts itself, it is called core graph.
(Nešeťril, Tardif).

B

A

A −→

B

A

←−

B

A

A B

Core

Minimization

Among all type graphs that generate the same language
(equivalence class of the homomorphism preorder), one is a
subgraph of all the others. This graph is called the core.

Retracts and Core Graphs

A subgraph T ′ of a graph T for which there exists a morphism
ϕ : T → T ′ is called a retract of T .

If a graph has no proper retracts itself, it is called core graph.
(Nešeťril, Tardif).

B

A

A −→

B

A

←−

B

A

A B

Core

Minimization

Among all type graphs that generate the same language
(equivalence class of the homomorphism preorder), one is a
subgraph of all the others. This graph is called the core.

Retracts and Core Graphs

A subgraph T ′ of a graph T for which there exists a morphism
ϕ : T → T ′ is called a retract of T .

If a graph has no proper retracts itself, it is called core graph.
(Nešeťril, Tardif).

B

A

A −→

B

A

←−

B

A

A B

Core

Invariant Checking

Let T be a graph and core(T) be its core.

Closure under rewriting

L(T) is closed under application of ρ ⇐⇒

L I R

core(T)

ρ

∀tL ∃tR

Question: How can we efficiently compute the core graph?

Invariant Checking

Let T be a graph and core(T) be its core.

Closure under rewriting

L(T) is closed under application of ρ ⇐⇒

L I R

core(T)

ρ

∀tL ∃tR

Question: How can we efficiently compute the core graph?

Part II

Core Computation

via SAT/SMT Encodings

The Problem

Core computation is NP-hard!

Reason: Checking whether there exists a morphism into is
equivalent to checking 3-colourability.

G is 3-colourable ⇐⇒ core(G]) =

Question: Given a graph G , does G contain a retract H?

Retract Morphism Problem

Given a graph G . Does there exist a non-surjective endomorphism
ϕ′ : G → G with ϕ′|H = idH where H = img(ϕ′)?

The Problem

Core computation is NP-hard!

Reason: Checking whether there exists a morphism into is
equivalent to checking 3-colourability.

G is 3-colourable ⇐⇒ core(G]) =

Question: Given a graph G , does G contain a retract H?

Retract Morphism Problem

Given a graph G . Does there exist a non-surjective endomorphism
ϕ′ : G → G with ϕ′|H = idH where H = img(ϕ′)?

The Problem

Core computation is NP-hard!

Reason: Checking whether there exists a morphism into is
equivalent to checking 3-colourability.

G is 3-colourable ⇐⇒ core(G]) =

Question: Given a graph G , does G contain a retract H?

Retract Morphism Problem

Given a graph G . Does there exist a non-surjective endomorphism
ϕ′ : G → G with ϕ′|H = idH where H = img(ϕ′)?

The Problem

Core computation is NP-hard!

Reason: Checking whether there exists a morphism into is
equivalent to checking 3-colourability.

G is 3-colourable ⇐⇒ core(G]) =

Question: Given a graph G , does G contain a retract H?

Retract Morphism Problem

Given a graph G . Does there exist a non-surjective endomorphism
ϕ′ : G → G with ϕ′|H = idH where H = img(ϕ′)?

SMT Solver

Satisfiability modulo theories (SMT) problem is a decision problem
for logical formulas with respect to combinations of background
theories expressed in classical first-order logic.

SMT solvers are useful for

Verification

Correctness proofs of programs

Software testing based on symbolic execution

We are using the SMT-LIB2 standard prefix notation.

Example

(declare-const x Int) | x , y ∈ Int
(declare-const y Int)
(assert (= (− x y) (+ x (− y) 1))) | x − y = x − y + 1
(check-sat)

SMT Solver

Satisfiability modulo theories (SMT) problem is a decision problem
for logical formulas with respect to combinations of background
theories expressed in classical first-order logic.

SMT solvers are useful for

Verification

Correctness proofs of programs

Software testing based on symbolic execution

We are using the SMT-LIB2 standard prefix notation.

Example

(declare-const x Int) | x , y ∈ Int
(declare-const y Int)
(assert (= (− x y) (+ x (− y) 1))) | x − y = x − y + 1
(check-sat)

SMT Solver

Satisfiability modulo theories (SMT) problem is a decision problem
for logical formulas with respect to combinations of background
theories expressed in classical first-order logic.

SMT solvers are useful for

Verification

Correctness proofs of programs

Software testing based on symbolic execution

We are using the SMT-LIB2 standard prefix notation.

Example

(declare-const x Int) | x , y ∈ Int
(declare-const y Int)
(assert (= (− x y) (+ x (− y) 1))) | x − y = x − y + 1
(check-sat)

SMT Solver

Satisfiability modulo theories (SMT) problem is a decision problem
for logical formulas with respect to combinations of background
theories expressed in classical first-order logic.

SMT solvers are useful for

Verification

Correctness proofs of programs

Software testing based on symbolic execution

We are using the SMT-LIB2 standard prefix notation.

Example

(declare-const x Int) | x , y ∈ Int
(declare-const y Int)
(assert (= (− x y) (+ x (− y) 1))) | x − y = x − y + 1
(check-sat)

Core Computation in a Nutshell

Input Graph

SAT/SMT
Encoding

Retract Morphism
Problem Reduction

SAT/SMT
Solver

Input

Satisfiable?
Output

3

Retract
Morphism

Parse
Model

Retract
Image

Set

7Core

Core Computation in a Nutshell

Input Graph

SAT/SMT
Encoding

Retract Morphism
Problem Reduction

SAT/SMT
Solver

Input

Satisfiable?
Output

3

Retract
Morphism

Parse
Model

Retract
Image

Set

7Core

Core Computation in a Nutshell

Input Graph

SAT/SMT
Encoding

Retract Morphism
Problem Reduction

SAT/SMT
Solver

Input

Satisfiable?
Output

3

Retract
Morphism

Parse
Model

Retract
Image

Set

7Core

Core Computation in a Nutshell

Input Graph

SAT/SMT
Encoding

Retract Morphism
Problem Reduction

SAT/SMT
Solver

Input

Satisfiable?
Output

3

Retract
Morphism

Parse
Model

Retract
Image

Set

7Core

Core Computation in a Nutshell

Input Graph

SAT/SMT
Encoding

Retract Morphism
Problem Reduction

SAT/SMT
Solver

Input

Satisfiable?
Output

3

Retract
Morphism

Parse
Model

Retract
Image

Set

7Core

Core Computation in a Nutshell

Input Graph

SAT/SMT
Encoding

Retract Morphism
Problem Reduction

SAT/SMT
Solver

Input

Satisfiable?
Output

3

Retract
Morphism

Parse
Model

Retract
Image

Set

7Core

Core Computation in a Nutshell

Input Graph

SAT/SMT
Encoding

Retract Morphism
Problem Reduction

SAT/SMT
Solver

Input

Satisfiable?
Output

3

Retract
Morphism

Parse
Model

Retract
Image

Set

7Core

Core Computation in a Nutshell

Input Graph

SAT/SMT
Encoding

Retract Morphism
Problem Reduction

SAT/SMT
Solver

Input

Satisfiable?
Output

3

Retract
Morphism

Parse
Model

Retract
Image

Set

7Core

Core Computation in a Nutshell

Input Graph

SAT/SMT
Encoding

Retract Morphism
Problem Reduction

SAT/SMT
Solver

Input

Satisfiable?
Output

3

Retract
Morphism

Parse
Model

Retract
Image

Set

7

Core

Core Computation in a Nutshell

Input Graph

SAT/SMT
Encoding

Retract Morphism
Problem Reduction

SAT/SMT
Solver

Input

Satisfiable?
Output

3

Retract
Morphism

Parse
Model

Retract
Image

Set

7Core

Retract Morphism Properties

For an input graph G = (V ,E , src , tgt, lab), the encoding of ϕ
needs to satisfy the following three conditions:

1) Graph morphism property:
The morphism ϕ needs to be structure preserving, i.e.

src(ϕE (e)) = ϕV (src(e)) tgt(ϕE (e)) = ϕV (tgt(e)) lab(ϕE (e)) = lab(e)

2) Subgraph property:
The morphism ϕ needs to be a non-surjective endomorphism, i.e.

dom(ϕ) = cod(ϕ) ∃v ∈ V : v /∈ img(ϕ)

3) Retract property:
The morphism ϕ restricted on its image is an identity morphism, i.e.

ϕ|img(ϕ) = id img(ϕ)

Retract Morphism Properties

For an input graph G = (V ,E , src , tgt, lab), the encoding of ϕ
needs to satisfy the following three conditions:

1) Graph morphism property:
The morphism ϕ needs to be structure preserving, i.e.

src(ϕE (e)) = ϕV (src(e)) tgt(ϕE (e)) = ϕV (tgt(e)) lab(ϕE (e)) = lab(e)

2) Subgraph property:
The morphism ϕ needs to be a non-surjective endomorphism, i.e.

dom(ϕ) = cod(ϕ) ∃v ∈ V : v /∈ img(ϕ)

3) Retract property:
The morphism ϕ restricted on its image is an identity morphism, i.e.

ϕ|img(ϕ) = id img(ϕ)

Retract Morphism Properties

For an input graph G = (V ,E , src , tgt, lab), the encoding of ϕ
needs to satisfy the following three conditions:

1) Graph morphism property:
The morphism ϕ needs to be structure preserving, i.e.

src(ϕE (e)) = ϕV (src(e)) tgt(ϕE (e)) = ϕV (tgt(e)) lab(ϕE (e)) = lab(e)

2) Subgraph property:
The morphism ϕ needs to be a non-surjective endomorphism, i.e.

dom(ϕ) = cod(ϕ) ∃v ∈ V : v /∈ img(ϕ)

3) Retract property:
The morphism ϕ restricted on its image is an identity morphism, i.e.

ϕ|img(ϕ) = id img(ϕ)

Retract Morphism Properties

For an input graph G = (V ,E , src , tgt, lab), the encoding of ϕ
needs to satisfy the following three conditions:

1) Graph morphism property:
The morphism ϕ needs to be structure preserving, i.e.

src(ϕE (e)) = ϕV (src(e)) tgt(ϕE (e)) = ϕV (tgt(e)) lab(ϕE (e)) = lab(e)

2) Subgraph property:
The morphism ϕ needs to be a non-surjective endomorphism, i.e.

dom(ϕ) = cod(ϕ) ∃v ∈ V : v /∈ img(ϕ)

3) Retract property:
The morphism ϕ restricted on its image is an identity morphism, i.e.

ϕ|img(ϕ) = id img(ϕ)

SMT-LIB2 Encoding of Retract Morphism Properties

Initialize the components of the input G = (V ,E , src , tgt, lab):

(declare-datatypes () ((V v1 . . . vN))) | (V = {v1, . . . , vn})
(declare-datatypes () ((E e1 . . . eM))) | (E = {e1, . . . , em})
(declare-datatypes () ((L A . . .))) | (Λ = {A, . . .})
(declare-fun src (E) V) | src : E → V

(declare-fun tgt (E) V) | tgt : E → V

(declare-fun lab (E) L) | lab : E → λ

For instance the graph A

1 2
can be encoded in the following way:

(assert (= (src e1) v1)) | src(e1) = v1

(assert (= (tgt e1) v2)) | tgt(e1) = v2

(assert (= (lab e1) A)) | lab(e1) = A

SMT-LIB2 Encoding of Retract Morphism Properties

Initialize the components of the input G = (V ,E , src , tgt, lab):

(declare-datatypes () ((V v1 . . . vN))) | (V = {v1, . . . , vn})
(declare-datatypes () ((E e1 . . . eM))) | (E = {e1, . . . , em})
(declare-datatypes () ((L A . . .))) | (Λ = {A, . . .})
(declare-fun src (E) V) | src : E → V

(declare-fun tgt (E) V) | tgt : E → V

(declare-fun lab (E) L) | lab : E → λ

For instance the graph A

1 2
can be encoded in the following way:

(assert (= (src e1) v1)) | src(e1) = v1

(assert (= (tgt e1) v2)) | tgt(e1) = v2

(assert (= (lab e1) A)) | lab(e1) = A

SMT-LIB2 Encoding of Retract Morphism Properties

Next, we specify the constraints for the morphism ϕ : G → G :

1) Graph morphism property

(declare-fun vphi (V) V) |ϕV : V → V

(declare-fun ephi (E) E) |ϕE : E → E

(assert (forall ((e E)) (= (src (ephi e)) (vphi (src e))))) | src(ϕE (e)) = ϕV (src(e))

(assert (forall ((e E)) (= (tgt (ephi e)) (vphi (tgt e))))) | tgt(ϕE (e)) = ϕV (tgt(e))

(assert (forall ((e E)) (= (lab (ephi e)) (lab e)))) | lab(ϕE (e)) = lab(e)

2) Subgraph property

(assert (exists ((v1 V)) not(exists ((v2 V)) (= v1 (vphi v2))))) | ∃v1 ∈ V¬∃v2 ∈ V :

v1 = ϕV (v2)

SMT-LIB2 Encoding of Retract Morphism Properties

Next, we specify the constraints for the morphism ϕ : G → G :

1) Graph morphism property

(declare-fun vphi (V) V) |ϕV : V → V

(declare-fun ephi (E) E) |ϕE : E → E

(assert (forall ((e E)) (= (src (ephi e)) (vphi (src e))))) | src(ϕE (e)) = ϕV (src(e))

(assert (forall ((e E)) (= (tgt (ephi e)) (vphi (tgt e))))) | tgt(ϕE (e)) = ϕV (tgt(e))

(assert (forall ((e E)) (= (lab (ephi e)) (lab e)))) | lab(ϕE (e)) = lab(e)

2) Subgraph property

(assert (exists ((v1 V)) not(exists ((v2 V)) (= v1 (vphi v2))))) | ∃v1 ∈ V¬∃v2 ∈ V :

v1 = ϕV (v2)

SMT-LIB2 Encoding of Retract Morphism Properties

We need to specify that the retract property ϕ|img(ϕ) = id img(ϕ)

holds. We rephrase this requirement in the following way:

∀x ∈ G
((
∃y ∈ G (ϕ(y) = x)

)
=⇒ ϕ(x) = x

)
Every element in the image of ϕ is part of the retract and therefore
always has to be mapped to itself.

3) Retract property

(assert (forall ((v1 V)) (=> (exists ((v2 V)) (= v1 (vphi v2))) (= v1 (vphi v1)))))

(assert (forall ((e1 E)) (=> (exists ((e2 E)) (= e1 (ephi e2))) (= e1 (ephi e1)))))

SMT-LIB2 Encoding of Retract Morphism Properties

We need to specify that the retract property ϕ|img(ϕ) = id img(ϕ)

holds. We rephrase this requirement in the following way:

∀x ∈ G
((
∃y ∈ G (ϕ(y) = x)

)
=⇒ ϕ(x) = x

)
Every element in the image of ϕ is part of the retract and therefore
always has to be mapped to itself.

3) Retract property

(assert (forall ((v1 V)) (=> (exists ((v2 V)) (= v1 (vphi v2))) (= v1 (vphi v1)))))

(assert (forall ((e1 E)) (=> (exists ((e2 E)) (= e1 (ephi e2))) (= e1 (ephi e1)))))

Example Graph

v1

v2 v3

v4

e0

A
e1

A

e2

A

e3

A

SAT Encoding of Retract Morphism Properties

The SAT encoding is more tedious to achieve.

Remove parallel edges from the type graph in a preprocessing step
 Find a node mapping describing the retract since the
corresponding edge mappings can be derived from it.

Our set of atomic propositions A has size |A| = |V × V |.

For a pair of nodes (x , y) ∈ V × V we use Ax-y with

A 3 Ax-y ≡ true iff ϕV (x) = y holds.

The node mapping must be a function.

Additional requirement∧
x∈V

∨
y∈V

(
Ax-y ∧

(∧
z∈V \{y} ¬Ax-z

))
| ∀x∃!y ϕV (x) = y

SAT Encoding of Retract Morphism Properties

The SAT encoding is more tedious to achieve.

Remove parallel edges from the type graph in a preprocessing step
 Find a node mapping describing the retract since the
corresponding edge mappings can be derived from it.

Our set of atomic propositions A has size |A| = |V × V |.

For a pair of nodes (x , y) ∈ V × V we use Ax-y with

A 3 Ax-y ≡ true iff ϕV (x) = y holds.

The node mapping must be a function.

Additional requirement∧
x∈V

∨
y∈V

(
Ax-y ∧

(∧
z∈V \{y} ¬Ax-z

))
| ∀x∃!y ϕV (x) = y

SAT Encoding of Retract Morphism Properties

The SAT encoding is more tedious to achieve.

Remove parallel edges from the type graph in a preprocessing step
 Find a node mapping describing the retract since the
corresponding edge mappings can be derived from it.

Our set of atomic propositions A has size |A| = |V × V |.

For a pair of nodes (x , y) ∈ V × V we use Ax-y with

A 3 Ax-y ≡ true iff ϕV (x) = y holds.

The node mapping must be a function.

Additional requirement∧
x∈V

∨
y∈V

(
Ax-y ∧

(∧
z∈V \{y} ¬Ax-z

))
| ∀x∃!y ϕV (x) = y

SAT Encoding of Retract Morphism Properties

The SAT encoding is more tedious to achieve.

Remove parallel edges from the type graph in a preprocessing step
 Find a node mapping describing the retract since the
corresponding edge mappings can be derived from it.

Our set of atomic propositions A has size |A| = |V × V |.

For a pair of nodes (x , y) ∈ V × V we use Ax-y with

A 3 Ax-y ≡ true iff ϕV (x) = y holds.

The node mapping must be a function.

Additional requirement∧
x∈V

∨
y∈V

(
Ax-y ∧

(∧
z∈V \{y} ¬Ax-z

))
| ∀x∃!y ϕV (x) = y

SAT Encoding of Retract Morphism Properties

The SAT encoding is more tedious to achieve.

Remove parallel edges from the type graph in a preprocessing step
 Find a node mapping describing the retract since the
corresponding edge mappings can be derived from it.

Our set of atomic propositions A has size |A| = |V × V |.

For a pair of nodes (x , y) ∈ V × V we use Ax-y with

A 3 Ax-y ≡ true iff ϕV (x) = y holds.

The node mapping must be a function.

Additional requirement∧
x∈V

∨
y∈V

(
Ax-y ∧

(∧
z∈V \{y} ¬Ax-z

))
| ∀x∃!y ϕV (x) = y

SAT Encoding of Retract Morphism Properties

1) Graph morphism property∧
e∈E

∨
e′∈Elab(e)

((
Asrc(e)-src(e ′)

)
∧
(
Atgt(e)-tgt(e ′)

))

2) Subgraph property∨
x∈V

(∧
y∈V
¬Ay -x

)
|∃x∀y ϕ(y) 6= x

3) Retract property∧
x∈V

((∨
y∈V

Ay -x
)
⇒ Ax-x

)
|ϕ|H = idH

The derivation of the formulas above is given in our paper.

SAT Encoding of Retract Morphism Properties

1) Graph morphism property∧
e∈E

∨
e′∈Elab(e)

((
Asrc(e)-src(e ′)

)
∧
(
Atgt(e)-tgt(e ′)

))

2) Subgraph property∨
x∈V

(∧
y∈V
¬Ay -x

)
|∃x∀y ϕ(y) 6= x

3) Retract property∧
x∈V

((∨
y∈V

Ay -x
)
⇒ Ax-x

)
|ϕ|H = idH

The derivation of the formulas above is given in our paper.

Part III

CoReS

(Computation of Retracts encoded SAT/SMT)

Experiments

The encodings were tested on 125 random graphs consisting of

a fixed number of nodes |V |.
a fixed number of available edge labels |Λ|.
a fixed probability ρ for an edge to exist.

SAT (Limboole) vs SMT (Z3)

ρ · |V | · |Λ|
0.5 0.8 1.0 1.2 1.5

|V | |Λ| SAT SMT SAT SMT SAT SMT SAT SMT SAT SMT

16
1 .075 .116 .078 .344 .078 .733 .071 1.17 .070 3.01
2 .067 .155 .096 .463 .080 1.12 .079 2.11 .078 4.21
3 .063 .172 .100 .548 .074 1.14 .071 2.02 .073 4.09

32
1 .301 .620 .306 4.58 .396 12.4 .424 27.4 .500 67.5
2 .389 1.08 .407 7.27 .415 14.9 .447 37.6 .450 121
3 .322 1.52 .383 5.27 .365 19.3 .391 40.3 .382 110

Final Remarks

Contribution:

Investigation of encodings for core computations:
Analysis and encoding of needed properties in SAT/SMT.

Benchmarks:
Trade-off between readability and performance.

Tool support:

CoReS:
Automatically compute core graphs via SAT/SMT encodings.

Features:

GUI mode for visualized core computations.

Integrable and executable standalone command line interface.

User-manual and source code (Python) available on GitHub:
https://github.com/mnederkorn/CoReS

https://github.com/mnederkorn/CoReS

Thank You
for your attention

Part IV

Additional Material

Invariant checking

Closure under Rewriting

Question: Given T and a (DPO) GTS rule r = (L← I → R).
Does Post{r}(L(T)) ⊆ L(T) hold?

Post{r}(L(T)) can not be computed...

Sufficient condition: Check whether for each morphism L→ T
there exists a morphism R → T such that the diagram below
commutes. This implies closure under rewriting.

L

��

Ioo // R

��

T

Invariant checking

Closure under Rewriting

Question: Given T and a (DPO) GTS rule r = (L← I → R).
Does Post{r}(L(T)) ⊆ L(T) hold?

Post{r}(L(T)) can not be computed...

Sufficient condition: Check whether for each morphism L→ T
there exists a morphism R → T such that the diagram below
commutes. This implies closure under rewriting.

L

��

Ioo // R

��

T

Invariant checking

Closure under Rewriting

Question: Given T and a (DPO) GTS rule r = (L← I → R).
Does Post{r}(L(T)) ⊆ L(T) hold?

Post{r}(L(T)) can not be computed...

Sufficient condition: Check whether for each morphism L→ T
there exists a morphism R → T such that the diagram below
commutes. This implies closure under rewriting.

L

��

Ioo // R

��

T

The missing piece

This is not an if-and-only-if condition. Counterexample:

A

1 2

��

1 2
oo //

1 2

B

��

B

A

A

However, the type graph represents all graphs with A- and
B-labelled edges and is hence closed under rewriting.

Solution: We obtain an if-and-only-if condition if we require that
the type graph T is a core!

The missing piece

This is not an if-and-only-if condition. Counterexample:

A

1 2

��

1 2
oo //

1 2

B

��

B

A

A

However, the type graph represents all graphs with A- and
B-labelled edges and is hence closed under rewriting.

Solution: We obtain an if-and-only-if condition if we require that
the type graph T is a core!

Experiments

Additional SAT runtimes

ρ · |V | · |Λ|
|V | |Λ| 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

24
1 .462 .595 .309 .333 .351 .359 .388 .476 .371 .589 .354
2 .337 .356 .548 .587 1.29 .623 .685 .685 .511 .739 .497
3 .410 .401 1.00 .460 .456 .871 .450 .490 1.60 .615 .574

32
1 .619 .828 .901 1.17 1.11 .85 .973 1.29 .986 1.01 1.53
2 .683 .809 .792 .988 1.03 1.27 1.04 1.13 1.23 1.22 1.23
3 1.13 1.01 .821 .819 1.16 .937 1.10 1.05 1.87 1.27 1.20

48
1 2.39 2.62 3.27 3.15 4.45 5.18 5.34 7.18 5.01 5.93 6.24
2 1.83 1.83 3.23 3.68 3.97 3.98 4.75 5.47 4.98 5.02 5.37
3 2.35 2.57 3.06 3.25 3.59 3.94 3.88 4.17 4.28 5.33 4.96

64
1 6.63 8.65 12.0 12.7 19.4 21.9 21.2 26.2 22.5 22.1 26.0
2 4.04 5.91 6.73 10.9 10.3 14.9 15.2 15.2 15.4 15.7 18.4
3 4.53 5.60 7.22 8.96 9.02 11.0 10.6 12.0 12.7 11.9 12.1

96
1 37.5 49.8 92.8 125 123 165 140 163 193 152 194
2 28.6 49.9 59.7 85.5 98.9 102 107 115 127 111 116
3 23.7 36.7 50.4 60.6 52.0 51.8 48.8 52.6 49.0 44.0 46.6

	Overview
	Background and Preliminaries
	Background and Preliminaries

	Core Computation via SAT/SMT Encodings
	Core Computation via SAT/SMT Encodings

	CoReS (Computation of Retracts encoded SAT/SMT)
	CoReS (Computation of Retracts encoded SAT/SMT)
	Final Remarks

	*
	*

