GRAPH-REWRITING | <crasw s
P E T R I N E T Géza Kulesar, Malte Lochay,
Andy Schiirr

| EXAMPLE: WSN TOPOLOGY CONTROL

Wireless

Mobile

sensor

communication
channels

nodes

@ Q)

T

OO @
. ©

N ((())) /

Short active edge .

Long active edge

_________ Unclassified edge

RRRRRRRRRRRRRRRRRRRRRRRRR

GRAPH-REWRITING PROCESSES

ﬂn? ’ T8

S .S
nz*—/ S Qf n3
L L

¥S4
L L

@ ne

Q T L L
L7 L
k L9 N5 R

g

T

LI'IIll l

environmental event: short

edge becomes long edge

:[\Illli

l—{III"

.”L;u .‘

.”L;u .‘

u

0@

. |
\.) Lo

match unclassified long edge

K Ru
ﬂ,ﬁ S;a S;J;.a‘ e — 8;a S;J;.a‘ — 8;a S;J;.a‘
.:’.‘ .C .!.‘ .C .!F .:
match two adjacent short edges /\,,else“

L; K R; L, K. R.
.”’L;u.C ..'f . ..uLli .-? ';;L;u': Bl ..u .: B ..r:L;a.:
inactivate long edge \/OICﬁVOI'fe long edge

»loop forever”
GRAPH-REWRITING PETRI NETS 3

OPEN CHALLENGES IN CONTROLLED
GRAPH REWRITING

= Control-flow specification for graph-rewriting processes to restrict the orderings of
graph-rewriting rule applications

= Data-flow specification for graph-rewriting processes to restrict the matches of
graph-rewriting rule applications

= Control-flow and data-flow specification for graph-rewriting processes with
concurrent rule composition and synchronization of rule applications

= Techniques for automated analysis of correctness properties for controlled graph-
rewriting process specifications

=, TC must preserve connectedness of input topology graphs*
= TC should eventually inactivate redundant long edges*
m TC must not deadlock due to concurrent interactions with environmental events*

» Graph-Rewriting Petri Nets (GPN) = Coloured Petri Nets
+ DPO Graph Rewriﬁng GRAPH-REWRITING PETRI NETS 4

PETRI NETS, VISUALLY

Concur-

S—

rency

Choice —=

Token Q—»

il

Pre- Arc Transi- Arc Post- Loops

Place tion Place

\ J
I

Sequence

1

GRAPH-REWRITING PETRI NETS 5

PETRI NETS, FORMALLY

= A Petri Net N consists of a set of places P and a set of transitions T

= A marking M € N¥ of N is a multiset, where M(p) = 0
denotes the number of tokens on place p

X
= A step M > M’ consists of a multiset of transitions X € N7

" A marking M is reachable from initial marking M, iff there
X X
exists a sequence of steps M, S5.5M

" Two transitions t,u € T are concurrent if there exists a

{t,u}

reachable marking M— M’

= A Petri Net N is k-bounded iff M(p) < k for all reachable
markings M and all places p

X
= A Petri Net N is live if for all reachable markings M - M’

GRAPH-REWRITING PETRI NETS 6

| COI.OURED PETRI NETS [JENSEN & CHRISTENSEN 2008]

transition guard over

colour set colour set
C(p) €X re CpHhezx

arc expression arc expression binds

binds token data to variable values to
variables token data

" Places are typed over sets X of colours

= Tokens carry data, typed over sets of colours

" Transitions and arcs are augmented with inscriptions over typed variables v € I/

GRAPH-REWRITING PETRI NETS 7

DPO RULE APPLICATION AS GPN
TRANSITION

1'G 1'H
Oz llionO.,
L ¢ 1 r > R
| |
m

GPN colour set Ypg = { Obj(Graph,), Mor(Graph,.)}
Variable G is bound to graph G € Obj(Graph;) carried by input token 1'G

Transition guard p corresponds to the DPO diagram for the application of
rule p:(L(LK;R) on match m in G
Variable H is bound to output graph H € Obj(Graph,) of the rule

application and assigned to output token 1'H
GRAPH-REWRITING PETRI NETS 8

NON-DETERMINISTIC CHOICE

G

RRRRRRRRRRRRRRRRRRRRRRRRR

= Non-applicability of rule

= |f-then-else fragment

NEGATIVE RULE APPLICATIONS &
DETERMINISTIC CHOICE

p: (L& KD R)

CONCURRENCY

16,
G
1IG H 1
G /
OBy 71O
HI
H G
1G,
Gn
e1” em .
G W Gm
G

= Rule application produces multiple concurrent copies of the output graph
= Rule application requires multiple concurrent input graphs

GRAPH-REWRITING PETRI NETS

| SUB-GRAPH BINDING AND MATCHING

I'G

Q S —sL— Ly +—1;—Kg—r2— Rs @

1'G I T | | G

|
= (PO) «k (PO) n .
@<L " e Lo O
H

(=)
f D g — I'b Y
o éz 5 o

* Qutput token b € Mor(Graph,) denote sub-graph bound in output graph H

t:."H—E

" Input token b € Mor(Graph,) denotes sub-graph to be matched in input graph G

GRAPH-REWRITING PETRI NETS 12

GENERIC GPN TRANSITION TEMPLATE

Multiple input

Multiple concurrent
sub-graph bindings O\' g Q Q g 'Q input graphs

1 =1. j=1.
s, ! 1 b Gl m G
—sf—Le—1—K-—r—R«s} N
1 | | | N N v v e, em
it (=) m (PO) k (PO) n (=) ’ v ~
| | | | I B B Gy o o o Gnm
B, — bl — G f—D—E—Hb —B] ;O ﬁ
\ ,
by () p W
v/ / G
G

1
Multiple output O/. .o O @ \O Multiple concurrent
sub-graph matchings i

copies of output graph

GRAPH-REWRITING PETRI NETS 13

GPN SEMANTICS: TWO PERSPECTIVES

GPN language
= A GPN marking M is completed if all tokens are from Obj(Graphy;)

®" The language of a GPN is the set of all completed markings
reachable from initial completed marking M,

GPN processes

" Let P ={pred |pred: Obj(Graph,.) — Bool} be a set of graph

predicates
" The processes of a GPN are defined by the LTS (5,50, =, P)
with set of states § = N*7¢ , initial state sy = M), step relation

X
M — M’, and a set of state properties 7

GRAPH-REWRITING PETRI NETS 14

WSN CASE STUDY REVISITED

N

2 3
— b, @ bm = Pmu | by, @ b, - pi : Topology Control |
4 I I
bm b
~

be >

. .- I
Pls Dsi p__ Dot , Environment .
| T b e e e c e e e e m e e e m e ——————————— :

" Centralized model " Concurrent model

»1C must preserve connectedness of input topology graphs* — Invariant property
»1C should eventually inactivate redundant long edges" — Fairness property

»1C must not deadlock ..." = Liveness property

GRAPH-REWRITING PETRI NETS 15

SUMMARY & FUTURE WORK

» GPN provide a visual, very expressive and formally founded
modeling language for controlled graph-rewriting processes

> Novel features: explicit notion of concurrency and sub-graph

binding /matching

Future Work
= Tool support based on CPN tools

" Further (application-specific) merge-operators
= Notions of expressiveness for GPN languages
= Notions of parallel independence for GPN processes

= Notions of equivalence for GPN processes

GRAPH-REWRITING PETRI NETS

RELATED WORK

First proposal of programmed (a.k.a. controlled) graph grammers [Bunke 1978]

Formal notion of concurrent graph processes [Corradini et al. 1996, Baldan et

al. 1999]

Denotational characterization of input /output semantics of graph-rewriting
processes [Schirr 1996]
Composable (graph) transformation units [Kreowski et al. 2008]

Operational semantics of GP language [Plump & Steinert 2009]
Tool support: PROGRES, GReAT, Fujaba, eMoflon, Henshin...

Combination of graph rewriting and Petri net theory [Hoffmann & Mossakowski
2002, Wimmer et al. 2009, Guerra & de Lara 2014]

GRAPH-REWRITING PETRI NETS 17

REFERENCES

10.

11.

. Baldan, P., Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Lowe, M.: Con-

current Semantics of Algebraic Graph Transformation. In: Handbook of Graph
Grammars and Computing by Graph Transformation, Vol. 3. pp. 107-187. World
Scientific (1999)

. Bunke, H.: Programmed Graph Grammars. In: Workshop on Graph Grammars

and Their Application to Computer Science. pp. 155-166. Springer (1978)

. Corradini, A., Ehrig, H., Lowe, M., Montanari, U., Rossi, F.: Abstract Graph

Derivations in the Double Pushout Approach. In: Dagstuhl Workshop on Graph
Transformations in Computer Science, 1993. pp. 86-103. Springer (1994)
Corradini, A., Montanari, U., Rossi, F.: Graph Processes. Fundam. Inf. 26(3-4)
241-265 (Jun 1996)

Corradini, A., Montanari, U., Rossi, F.: Graph processes. Fundamenta Informaticae
26(3/4), 241-265 (1996)

Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Springer (2006)

Esparza, J.: Decidability and complexity of petri net problems - an introduction.
In: Lectures on Petri Nets 1. pp. 374-428. Springer (1998)

Fischer, T., Niere, J., Torunski, L., Ziindorf, A.: Story Diagrams: A New Graph
Rewrite Language Based on the Unified Modeling Language and Java. In: TAGT
98. LNCS, vol. 1764, pp. 157-167. Springer (2000)

?

. Ghamarian, A.H., de Mol, M.J., Rensink, A., Zambon, E., Zimakova, M.V.: Mod-

elling and Analysis using GROOVE. International Journal on Software Tools for
Technology Transfer 14, 15-40 (2012)

Guerra, E., de Lara, J.: Colouring: execution, debug and analysis of qvt-relations
transformations through coloured petri nets. Software & Systems Modeling 13(4),
1447-1472 (2014)

Hoffmann, K., Mossakowski, T.: Algebraic higher-order nets: Graphs and petri nets
as tokens. In: WADT (2002)

GRAPH-REWRITING PETRI NETS

18

REFERENCES

13.

14.

16.

17.

18.

19.

20.

21.

Kluge, R., Stein, M., Varrd, G., Schiirr, A., Hollick, M., Miihlhauser, M.: A system-
atic approach to constructing families of incremental topology control algorithms
using graph transformation. Software & Systems Modeling (2017)

Kreowski, H.J., Kuske, S., Rozenberg, G.: Graph Transformation Units - An
Overview. In: Concurrency, Graphs and Models. pp. 57-75. Springer (2008).
https://doi.org/10.1007/978-3-540-68679-8_5

. Leblebici, E., Anjorin, A., Schiirr, A.: Developing eMoflon with eMoflon. In: ICMT

2014. pp. 138-145. Springer International Publishing

Li, M., Li, Z., Vasilakos, A.V.: A survey on topology control in wireless sensor
networks: Taxonomy, comparative study, and open issues. Proceedings of the IEEE
101(12), 2538-2557 (2013)

Plump, D., Steinert, S.: The Semantics of Graph Programs. In: RULE 2009 (2009)
Schiirr, A.: Logic-Based Programmed Structure Rewriting Systems. Fundam. Inf.
26(3,4), 363-385 (1996)

Schurr, A., Winter, A.J., Zundorf, A.. The PROGRES-Approach: Lan-
guage and Environment. In: Handbook of Graph Grammars and Comput-
ing by Graph Transformation, Vol. 2, pp. 487-550. World Scientific (1999).
https://doi.org/10.1142/9789812815149_0013

Stritber, D., Born, K., Gill, K.D., Groner, R., Kehrer, T., Ohrndorf, M., Tichy,
M.: Henshin: A usability-focused framework for emf model transformation devel-
opment. In: ICGT 2017. Springerg (2017)

Wimmer, M., Kappel, G., Kusel, A., Retschitzegger, W., Schénbock, J., Schwinger,
W.: Right or wrong?-verification of model transformations using colored petri nets.
In: DSM 2009

GRAPH-REWRITING PETRI NETS

19

GRAPH-REWRITING INSCRIPTIONS

* Colour set of GPN Ypg = {0bj(Graph,), Mor(Graph)}

= Graph-rewriting inscriptions I € INSCRrq.v

» Finite category of bound variables BVj

> Finite category of free variables FV: st BV: C FV;
» Binding functor By : BVy — Graph, s.t.
Vv € BVy: Type(v) = Type(Br(v))
> A set of categorial properties @ for the images of F V7
" An inscription binding is a functor B .FVI_“% GraphT;—; s.t.
> Blpv;=Br and Yv € FVy: Type(v) = Type(B(v))

> I({B)is satisfied if B(FVy) satisfies @y

GRAPH-REWRITING PETRI NETS 20

	Graph-Rewriting Petri Nets
	Example: WSN Topology Control
	Graph-Rewriting Processes
	Open Challenges in Controlled Graph Rewriting
	Petri Nets, Visually
	Petri Nets, Formally
	Coloured Petri Nets [Jensen & Christensen 2008]
	DPO Rule Application As GPN Transition
	Non-Deterministic Choice
	Negative Rule Applications & Deterministic Choice
	Concurrency
	Sub-Graph Binding and Matching
	Generic GPN Transition Template
	GPN Semantics: Two Perspectives
	WSN Case StudY Revisited
	Summary & Future Work
	Related Work
	References
	References
	Graph-rewriting Inscriptions

