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| EXAMPLE: WSN TOPOLOGY CONTROL
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GRAPH-REWRITING PROCESSES
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OPEN CHALLENGES IN CONTROLLED
GRAPH REWRITING

= Control-flow specification for graph-rewriting processes to restrict the orderings of
graph-rewriting rule applications

= Data-flow specification for graph-rewriting processes to restrict the matches of
graph-rewriting rule applications

= Control-flow and data-flow specification for graph-rewriting processes with
concurrent rule composition and synchronization of rule applications

= Techniques for automated analysis of correctness properties for controlled graph-
rewriting process specifications

=, TC must preserve connectedness of input topology graphs*
= TC should eventually inactivate redundant long edges*
m  TC must not deadlock due to concurrent interactions with environmental events*

» Graph-Rewriting Petri Nets (GPN) = Coloured Petri Nets
+ DPO Graph Rewriﬁng GRAPH-REWRITING PETRI NETS 4



PETRI NETS, VISUALLY
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PETRI NETS, FORMALLY

= A Petri Net N consists of a set of places P and a set of transitions T

= A marking M € N¥ of N is a multiset, where M(p) = 0
denotes the number of tokens on place p

X
= A step M > M’ consists of a multiset of transitions X € N7

" A marking M is reachable from initial marking M, iff there
X X
exists a sequence of steps M, S5.5M

" Two transitions t,u € T are concurrent if there exists a

{t,u}

reachable marking M— M’

= A Petri Net N is k-bounded iff M(p) < k for all reachable
markings M and all places p

X
= A Petri Net N is live if for all reachable markings M - M’
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| COI.OURED PETRI NETS [JENSEN & CHRISTENSEN 2008]

transition guard over

colour set colour set
C(p) €X re CpHhezx

arc expression arc expression binds

binds token data to variable values to
variables token data

" Places are typed over sets X of colours

= Tokens carry data, typed over sets of colours

" Transitions and arcs are augmented with inscriptions over typed variables v € I/
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DPO RULE APPLICATION AS GPN
TRANSITION
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GPN colour set Ypg = { Obj(Graph,), Mor(Graph,.)}
Variable G is bound to graph G € Obj(Graph;) carried by input token 1'G

Transition guard p corresponds to the DPO diagram for the application of
rule p:(L(LK;R) on match m in G
Variable H is bound to output graph H € Obj(Graph,) of the rule

application and assigned to output token 1'H
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NON-DETERMINISTIC CHOICE
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= Non-applicability of rule

= |f-then-else fragment

NEGATIVE RULE APPLICATIONS &
DETERMINISTIC CHOICE

p: (L& KD R)




CONCURRENCY
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= Rule application produces multiple concurrent copies of the output graph
= Rule application requires multiple concurrent input graphs
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| SUB-GRAPH BINDING AND MATCHING
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* Qutput token b € Mor(Graph,) denote sub-graph bound in output graph H

t:."H—E

" Input token b € Mor(Graph,) denotes sub-graph to be matched in input graph G
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GENERIC GPN TRANSITION TEMPLATE
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GPN SEMANTICS: TWO PERSPECTIVES

GPN language
= A GPN marking M is completed if all tokens are from Obj(Graphy;)

®" The language of a GPN is the set of all completed markings
reachable from initial completed marking M,

GPN processes

" Let P ={pred |pred: Obj(Graph,.) — Bool} be a set of graph

predicates
" The processes of a GPN are defined by the LTS (5,50, =, P)
with set of states § = N*7¢ , initial state sy = M), step relation

X
M — M’, and a set of state properties 7
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WSN CASE STUDY REVISITED

N

2 3
— b, @ bm = Pmu | by, @ b, - pi : Topology Control |
4 I I
bm b
~

be >

. .- I
Pls Dsi p__ Dot , Environment .
| T b e e e c e e e e m e e e m e ——————————— :

" Centralized model "  Concurrent model

»1C must preserve connectedness of input topology graphs* — Invariant property
»1C should eventually inactivate redundant long edges" — Fairness property

»1C must not deadlock ..." = Liveness property
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SUMMARY & FUTURE WORK

» GPN provide a visual, very expressive and formally founded
modeling language for controlled graph-rewriting processes

> Novel features: explicit notion of concurrency and sub-graph

binding /matching

Future Work
= Tool support based on CPN tools

"  Further (application-specific) merge-operators
=  Notions of expressiveness for GPN languages
= Notions of parallel independence for GPN processes

= Notions of equivalence for GPN processes
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RELATED WORK

First proposal of programmed (a.k.a. controlled) graph grammers [Bunke 1978]

Formal notion of concurrent graph processes [Corradini et al. 1996, Baldan et

al. 1999]

Denotational characterization of input /output semantics of graph-rewriting
processes [Schirr 1996]
Composable (graph) transformation units [Kreowski et al. 2008]

Operational semantics of GP language [Plump & Steinert 2009]
Tool support: PROGRES, GReAT, Fujaba, eMoflon, Henshin...

Combination of graph rewriting and Petri net theory [Hoffmann & Mossakowski
2002, Wimmer et al. 2009, Guerra & de Lara 2014]
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GRAPH-REWRITING INSCRIPTIONS

* Colour set of GPN  Ypg = {0bj(Graph, ), Mor(Graph )}

=  Graph-rewriting inscriptions I € INSCRrq.v

» Finite category of bound variables BVj

> Finite category of free variables FV: st BV: C FV;
» Binding functor By : BVy — Graph, s.t.
Vv € BVy: Type(v) = Type(Br(v))
> A set of categorial properties @ for the images of F V7
" An inscription binding is a functor B .FVI_“% GraphT;—; s.t.
> Blpv;=Br and Yv € FVy: Type(v) = Type(B(v))

> I({B)is satisfied if B(FVy) satisfies @y
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