Splicing/Fusion Grammars
and Their Relation to
(Chomsky and) Hypergraph Grammars

Hans-Jorg Kreowski !, Sabine Kuske ! and Aaron Lye 2

University of Bremen
I Department of Computer Science, 2 Department of Mathematics
P.O.Box 33 04 40, 28334 Bremen, Germany

{kreo,kuske,lye}@informatik.uni-bremen.de

25.06.2018

11th International Conference on Graph Transformation (ICGT)

Motivation

We introduced fusion grammars at ICGT17.

Formal framework for fusion processes in:

| 2

vVvYyyvyy

DNA computing
chemistry

tiling

fractal geometry
visual modeling

etc

DNA computing

OH P
5 3
3 8’
5 OH
H hydrogen bonding
OH 13
5 y
. ollaMoNcHGE ¥
fusion (et il e
(ligation) 5 g iyt
DNA ligase
ot ar
CCCGGIG
G GuGICiC C
A 5!

Figure 1.24: Ligation

DNA computing

OH
5' 3
3 =
' OH
III hydrogen bonding
OH P
5 ¥
. ollaMoNcHGE ¥
fusion (el - e 1
(ligation) 5 g iyt
DNA ligase
5 5
CCCGGG
G GuGICiC C
3 5

Figure 1.24: Ligation

splicing
(triggered by enzymes)

Hypergraph

We consider hypergraphs over ¥ with hyperedges like

vie—1 /k/'Vk
V20/2/

where A € .

The class of all hypergraphs over ¥ is denoted by Hy.

Fusion

Let F C X be a fusion alphabet
with a type k(A) € N for each A € F and
with a disjoint complementary copy F C ¥ where k(A) = k(A).

A fusion rule fr(A) is defined as

) I 137
2 1 1 2/ / /
o b 2 252
A A D -
k(A) k(A)| .~

Fusion

Let F C X be a fusion alphabet
with a type k(A) € N for each A € F and
with a disjoint complementary copy F C ¥ where k(A) = k(A).

A fusion rule fr(A) is defined as

, Loy v
2\{1 T /52 > 2—
1 1 (]] ?
A A 2 —
K(A) K(A)|-
k(a) k(A k(A) k(AY K(A) = K(AY

fr(A) = (A® + A° 42 g 4 g el gy

where K = [k(A)], in is the inclusion of K into A® and in is the
inclusion of K into A"

Fusion rule application

» The application of fr(A) is defined by a double pushout

_ein+in (1k,1k)
A*+ A K+ K

f c f!
H C H'

where matching morphism f: A® 4+ A° — H satisfies the
gluing condition always.
» C is unique up to isomorphism because in -+ in is injective.

» It is denoted by H = H'.
fr(A)

Example

AT 1,

Fusion grammar FG = (Z,F, M, T)

> Z € Hp gumuT Start hypergraph
F,M, T gﬁz, fusion, marker,ﬁterminal alphabet
MN(FUF)=0, TN(FUF)=0=TnNM

Fusion grammar FG = (Z,F, M, T)

| 4

Z € Hp g muT Start hypergraph
F,M, T gﬁz, fusion, marker,ﬁterminal alphabet
MN(FUF)=0, TN(FUF)=0=TnNM

A direct derivation is either

H= H' for some A € F or
fr(A)
H=m-H = Z m(C) - C for some multiplicity m: C(H) - N
CeC(H)

where C(H) is the set of all connected components of H.

A derivation is defined by the reflexive and transitive closure.

Fusion grammar FG = (Z,F, M, T)

| 4

Z € Hp g muT Start hypergraph
F,M, T gﬁz, fusion, marker,ﬁterminal alphabet
MN(FUF)=0, TN(FUF)=0=TnNM

A direct derivation is either

H= H' for some A € F or
fr(A)
H=m-H = Z m(C) - C for some multiplicity m: C(H) - N
CeC(H)

where C(H) is the set of all connected components of H.
A derivation is defined by the reflexive and transitive closure.

The generated language

L(FG) = {remy(Y) | Z==H,Y € C(H) N (Hrum — HT)}-

Example

Aot 1,

Splicing

Let F C ¥ be a fusion alphabet R
with a disjoint complementary copy F C X

A splicing rule sr(A) is

1 5 1/ 1 1/ 5 1 1’ o
2 f 2/ g 2/ '\ng 1 ‘
— c A A
cka)y kA
KA) = k(AY k(A) k(ay KCA) k(AY

K (1K71K> K+K in+in A._’_I’A.

where K = [k(A)], in is the inclusion of K into A® and in is the
respective inclusion of K into A®.

Splicing rule application

» The application of sr(A) is defined by a double pushout

(1k,1k) in+ in ~
+ K Ao —|—A.

K
M e e

C H'

» C is not uniquely determined, because lefthand-side morphism
is not injective.

» It is denoted by H — H'.
sr(A)

Example

Consider sr(A) = (o < o o — ACe @5 4).

Apply sr(A) to E)o»o :

The pushout complement objects are:
O
=

o_® o—>e
®—>0 g/,oao Cﬁ)/oao

The derived graphs are:

NIRRT
B Do D
¢ ¢

(@)
~a
Do oo

A A

®—>O
o—e

g\ —>0

%
?\Qﬁ»o

O—>

Example

Consider sr(A) = (o < o o — ACe e 4).
Apply sr(A) to E)o»o :
The pushout complement objects are:

o o—0

} o0 ﬁ\oao t ,e—0 >0
o o

- o—e

The derived graphs are:
E)E»o E)&;o E:&?o g%&»o
o Qq O»QL\ ?\Qio

2/4»0 T/

O—>
A A 5A

This waste nondeterminism is often undesireable.
To cut it down, one may use context conditions.

Splicing rule with fixed disjoint context

srfdc(A, a) consists of a splicing rule sr(A) and a morphism
a: K — X for some context X.

sHdc(A, a) = (X & K XK je ¢ inting pe 4 ey

Splicing rule with fixed disjoint context

srfdc(A, a) consists of a splicing rule sr(A) and a morphism
a: K — X for some context X.

sHdc(A, a) = (X & K XK je ¢ inting pe 4 ey

It is applicable to H if the pushout complement can be chosen in

1K7 1K

fl mpy 1y ta
H——Y+ X

where m: Y — H is injective.

» The complement consists of two disjoint parts one of which is
X.

» It is unique if it exists.
> X gets an z—hyperedge and Y get an A-hyperedge.

Example

C A.+//Z\.)

2 [2] + [2] + [2]

Splicing/fusion grammar SFG = (Z,F, M, T, SR)
extends fusion grammars by splicing rules with fixed disjoint context.
> F,M, T C %, fusion, marker, terminal alphabet

I\/m(FUF)_@ TN(FUF)=0=TnM
MN(FUF)=0, TN(FUF) =10

Splicing/fusion grammar SFG = (Z,F, M, T, SR)

extends fusion grammars by splicing rules with fixed disjoint context.

> F,M, T C %, fusion, marker, terminal alphabet
I\/m(FUF)_@ TN(FUF)=0=TnM
MN(FUF)=0, TN(FUF) =10

» A direct derivation is either

H=H for some A € F or
fr(A)
H=m-H= Z m(C) - C for some m: C(H) — N or
" cec(H)
H = H forsome A€ F and a: K — X.

srfdc(A,a)

Splicing/fusion grammar SFG = (Z,F, M, T, SR)

extends fusion grammars by splicing rules with fixed disjoint context.

> F,M, T C %, fusion, marker, terminal alphabet
I\/m(FUF)_@ TN(FUF)=0=TnM
MN(FUF)=0, TN(FUF) =10

» A direct derivation is either

H=—= H for some A€ F or
fr(A)

H=m-H= Z m(C) - C for some m: C(H) — N or
" cec(H)

H = H for some Ac F and a: K — X.
srfdc(A,a)

» The generated language

L(SFG) = {remy(Y) | Z==H,Y € C(H) N (H1um — HT)}

Generative power

ICGT17:

» Fusion grammars can simulate hyperedge replacement
grammars.

» Their membership problem is deciable.

How powerful are splicing/fusion grammars?

Transformation of Chomsky grammars
into splicing/fusion grammars
Let (N, T,P,S) be a Chomsky grammar.
Letp:(ul...uk,vl...v/) e P.

Let xy...Xp = X1 ... Xj—1U1 ... UkXitk - - - Xn
Then

X1 ... Xj—1U1 ... UkXi+k---Xn:p>X1 e Xj—1V1 - VI Xk -

. Xn

Transformation of Chomsky grammars
into splicing/fusion grammars

Let (N, T,P,S) be a Chomsky grammar.
Let p=(u1...ug,vi...vy) € P.

Let xy...Xp = X1 ... Xj—1U1 ... UkXitk - - - Xn
Then

X1...X,',1U1...ukX,'_,_k...Xn:p>X1...X,',1V1...V/Xi+k...Xn

Adapting a transformation of Chomsky grammars into iterated
splicing systems (cf. [P3un,Rozenberg,Salomaa:1998]).

be X1 Ki—1 be X1

Simulating a direct derivation p= (v .. U, 1)

be x1 X2 Y ?/‘
. .Xn)act,i — Xn _

cyc(xy

Simulating a direct derivation p= (v .. Uk Vi...v) € P

X1 X2 be X1 Xi—1
" Xn Xn act
cyc(xi ..)"”C i i !
\\ //

\\‘y

\ XI+1XI
. Xi+k
1. splicing, i.e., be X1 N
. Xn \ uy Uy
cyc(xy ... xq) ! poFactoee - e
sr(Ap,ur...,ux) " Xi—1 —
S Ki+k Ap
Ap A
up U § 3 - "3
sr(Ap,ur...ux) = actCe-—>e. e 2 * s < . s - oo

1’ 2
Ap

Simulating a direct derivation p= (v .. Uk Vi...v) € P

X1 x2 be X1 Ki—1
Xn Xn act
t, u
cyc(xi ..)aC i ,\ 1/
N ,

Y

\ XI+1XI
_ Xit+k
1. splicing, i.e., be X1
\
. X \ uy i
cyc(xy ... xp)*H ! 8 bactCee - e—e
sr(Ap,ur...,ux) " Xi—1 —
S Ki+k Ap
A
i 1 2 1%
! Uk e & — 8
sr(Ap,up...ux) = actCe—>e- e>e O e o < o o C .
P 1 2 1 2 S PSR Y
1" 2 1 A 2
Xj—1
Owﬁoact
2. fusion, i.e., A fr(A" .

+ cyc(x1 ... Xi—1ApXitk - - - Xn) \.&/véact

Xit+k

Moving the act-loop

R=PU{(x,x) | xe NUT}

i.e., foreach x e NU T:
> ¢ = X, e act, and
Ax
» sr(Ax,x) = actc‘zig D

e o—

Ne en

N
e o—

X

Ne en

Moving the act-loop

R=PU{(x,x) | xe NUT}
i.e., foreach x e NU T:

X
» ¢, = e—se<act, and

AX X % % % Ax g
> sr(Ax,x) = acte>e O e e — O O C)
1 2 1 2 1 2 1" 5 2
X
1. splicing, i.e., be X1 o
t,i Xn \ Xi
cyc(xy ... xp)%0 T A==
sr(Asx,xi) \ = A
S+l N

Moving the act-loop

Q=PU{(x,x)|xe NUT}

i.e., foreach x e NU T:

X
» ¢, = e—se<act, and

A X IR
> sr(Ac,x) =actCe>e O e 8 < o o C o
1/ 2/ 1/ -~ 2/
X
1. splicing, i.e., be X1 RN
£ Xn \\ Xi
cyc(xy ... xp)2H! ¢ + actCe——se
sr(Ax;»xi) N i—1 2
il X
A,
2. fusion, i.e., be x1 X2 s
A Xn \
cyc(X1...Xj— Xitk++-Xn) + C — ¢
y (1 i—1 % Xi+k n) Xj ff(Ax,-) \\ Xi_1

Transformation Chomsky grammars into splicing/fusion

grammars
Given Chomsky grammar CG = (N, T, P, S).
Let Q=PU{(x,x) | xe NUT}.

SFG(CG) = (Z(CG), N(CG), 0, T(CG), SR(CG))
N(CG) ={A, |y € NUTUP}U{act}
T(CG) = T U {be}

b
Z(CG) = C§Qact + eoact + > OMmact
p=(u,v1...v))€EQ ZP

SR(CG) = {sr(Ap,u1...,ux) | p=(u1...uxv) € Q}

where
A
u Uk 3 .3
sr(Ap,ur ..., ux) = acte—e- e>e O & 8 o o S oo
1 2 1 A 2

Theorem |

Let CG = (N, T,P,S) be a Chomsky grammar
and SFG(CG) the corresponding splicing/fusion grammar.
Then

cyc(L(CG)) = L(SFG(CG)).

G transform SFG(CG)

generate generate

L(Ce) =<

cyc(L(CG)) = L(SFG(CG))

Hypergraph grammar HGG = (N, T, P, S)

» N,TCEL, TNnN=0,SeN,
A€ N has a type k(A) e N
P is a finite set of rules of the form r = (L < K LN R)
where L, K, R € Hy, K discrete and a injective.

> A rule application H—> H' (direct derivation) is defined by a

double pushout
a b

L<~—K—R
8l o by |
H%IHH’
where matching morphism g: L — H is subject to the gluing
condition.
> L(HGG) ={X e HT|S* :;>X}.

Simulating a direct derivation

HGG:r=(LD K% R) —

—

R together with an
additional A,-hyperedge
SFG : + X ") attached to b(1)- - b(k).

k(A,)

Simulating a direct derivation

HGG:r=(LD K% R) —

—

R together with an
additional A,-hyperedge

SFG : + attached to b(1)--- b(k).
k(Ar)
1 + A :
A K(A)
—
srfdc(Ar,a) k(A)
ak(Ar)—L 4 .
.I

k(AV)

Simulating a direct derivation

HGG:r=(LD K 2 R)

—

SFG : +

k(A,)

A
1 +
Ar k(A
— (A (Ar)
srfdc(Ar,a)
ak(Ar)—L 4
+ X

k(AV)

R together with an
additional A,-hyperedge

attached to b(1)--- b(k).

—
fr(Ar)

>

Transformation of hypergraph grammars into
splicing/fusion grammars

Connective hypergraph grammar:
Each connected component contains some gluing node and

for each (LD K LN R): if i,j € Vi are connected in L, then
b(i), b(j) are connected in R.

Lemma
Connectedness is preserved.

Transformation of hypergraph grammars into
splicing/fusion grammars

Connective hypergraph grammar:

Each connected component contains some gluing node and
for each (LD K LN R): if i,j € Vi are connected in L, then
b(i), b(j) are connected in R.

Lemma
Connectedness is preserved.

Theorem (2)

Let HGG = (N, T, P,S) be a connective hypergraph grammar
and SFG(HGG) its corresponding splicing/fusion grammar.
Then

L(HGG) = L(SFG(HGQG)).

In other words, splicing/fusion grammars can simulate hypergraph
grammars, but connectedness must be preserved.

Transformation of hypergraph grammars into
splicing/fusion grammars

SFG(HGG) = (Z(HGG), F(HGG), M(HGG), T(HGG), SR(HGG))

» F(HGG) ={A,|r=(L2[k] = R) € P,k(A,) = k},
M(HGG) = {pu} with k(n) =0, T(HGG) =T
> F(HGG), F(HGG), F(HGG), M(HGG), T are pairwise disjoint.
> Z(HGG) =S, + 3 C(r)
reP
where C(r) for r = (L D [k] LN R) is R together with an
additional A,-hyperedge attached to b(1)--- b(k).

> SR(HGG) = {srfdc(A,,a) | r = (L D [K] — R) € P) where

srfdc(Ar, a) = (L 3 [k(A,)] AR 1 op 311 1(A)] SE Ay A

Pushout property

Lemma
Let C be a category with finite coproduct (denoted by +) and
pushouts. Consider the following diagrams:

1Ka1K
[«—2 K K <) K+ K
g (1) |d gea (2) [d+a
/ H I+ L
m (m, g)

Then the left diagram is a pushout if and only if the right diagram
is a pushout.

Conclusion

> We have extended fusion grammars by splicing rules with fixed
disjoint context.

» Transformation of Chomsky grammars into splicing/fusion
grammars.

» Transformation of connective hypergraph grammars into
splicing/fusion grammars.
Further work:

P Are there other meaningful conditions for splicing besides
fixed disjoint context?

» How are DNA computing models related to splicing/fusion
grammars?

» How can we overcome the limitation of generating connected
components?

P Are there interesting examples where one can use all
connected component resulting from splicing?

Thank you! Questions?

