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Motivation

We introduced fusion grammars at ICGT17.

Formal framework for fusion processes in:
I DNA computing
I chemistry
I tiling
I fractal geometry
I visual modeling
I etc



DNA computing
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(ligation)

splicing
(triggered by enzymes)
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Hypergraph

We consider hypergraphs over Σ with hyperedges like

•v1 1

•v2 2 A
•vkk

where A ∈ Σ.

The class of all hypergraphs over Σ is denoted by HΣ.



Fusion
Let F ⊆ Σ be a fusion alphabet
with a type k(A) ∈ N for each A ∈ F and
with a disjoint complementary copy F ⊆ Σ where k(A) = k(A).

A fusion rule fr(A) is defined as

•1
1

•1
′

1
•2

2
•2
′

2
A A

• •k(A)

k(A)

k(A)′
k(A)

⊇

•1 •1
′

•2 •2
′

•
k(A)

•
k(A)′

→

•1 = 1′

•2 = 2′

•
k(A) = k(A)′

fr(A) = (A• + A• in+in←−−− K + K 〈1K ,1K 〉−−−−−→ K )

where K = [k(A)], in is the inclusion of K into A• and in is the
inclusion of K into A•.
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Fusion rule application

I The application of fr(A) is defined by a double pushout

KK + KA• + A•

H C H ′

〈1K , 1K 〉

f ′c
e

in + in

f
e′

where matching morphism f : A• + A• → H satisfies the
gluing condition always.

I C is unique up to isomorphism because in + in is injective.
I It is denoted by H =⇒

fr(A)
H ′.
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Fusion grammar FG = (Z , F , M, T )

I Z ∈ HF∪F∪M∪T start hypergraph
F ,M,T ⊆ Σ, fusion, marker, terminal alphabet
M ∩ (F ∪ F ) = ∅, T ∩ (F ∪ F ) = ∅ = T ∩M

I A direct derivation is either

H =⇒
fr(A)

H ′ for some A ∈ F or

H =⇒
m

m · H =
∑

C∈C(H)
m(C) · C for some multiplicity m : C(H)→ N

where C(H) is the set of all connected components of H.
I A derivation is defined by the reflexive and transitive closure.
I The generated language

L(FG) = {remM(Y ) | Z ∗=⇒H,Y ∈ C(H) ∩ (HT∪M −HT )}.
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Splicing

Let F ⊆ Σ be a fusion alphabet
with a disjoint complementary copy F̂ ⊆ Σ

A splicing rule sr(A) is

•1 = 1′

•2 = 2′

•
k(A) = k(A)′

←

•1 •1
′

•2 •2
′

•
k(A)

•
k(A)′

⊆

•1
1

•1
′

1•2
2

•2
′

2
A Â

• •k(A)
k(A)

k(A)′
k(A)

K 〈1K ,1K 〉←−−−−− K + K in+în−−−→ A• + Â•

where K = [k(A)], in is the inclusion of K into A• and în is the
respective inclusion of K into Â•.



Splicing rule application

I The application of sr(A) is defined by a double pushout

K K + K A• + Â•

H C H ′

〈1K , 1K 〉

f c
e

in + în

f ′
e′

I C is not uniquely determined, because lefthand-side morphism
is not injective.

I It is denoted by H =⇒
sr(A)

H ′.



Example
Consider sr(A) = (• ← • • → • •A Â).
Apply sr(A) to ◦

◦ • ◦ .
The pushout complement objects are:

◦
◦ • ◦ ◦

◦ • ◦• ◦
◦ • ◦• ◦

◦ • ◦• ◦
◦ •• ◦

The derived graphs are:

◦
◦ • ◦

A

Â ◦
◦ • ◦•

A

Â ◦
◦ • ◦•

A

Â ◦
◦ • ◦•

A

Â
◦
◦ •• ◦

A

Â

◦
◦ • ◦•̂

A

A ◦
◦ • ◦•̂

A

A ◦
◦ • ◦•̂

A

A
◦
◦ •• ◦

Â

A

This waste nondeterminism is often undesireable.
To cut it down, one may use context conditions.
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Â ◦
◦ • ◦•

A

Â
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Splicing rule with fixed disjoint context
srfdc(A, a) consists of a splicing rule sr(A) and a morphism
a : K → X for some context X .

srfdc(A, a) = (X a←− K 〈1K ,1K 〉←−−−−− K + K in+în−−−→ A• + Â•)

It is applicable to H if the pushout complement can be chosen in
the following way

K K + K

H Y + X

〈1K , 1K 〉

f y + a〈m, b〉

where m : Y → H is injective.
I The complement consists of two disjoint parts one of which is

X .
I It is unique if it exists.
I X gets an Â-hyperedge and Y get an A-hyperedge.
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Example

cut = (
2•
1•

•
•
•
⊇ [2]← [2] + [2] ⊆ A• + Â•)

•
••
•
•
•

•
•

•
•
•

=⇒
cut •

••
•
•
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•
•

A + Â •
•
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•



Splicing/fusion grammar SFG = (Z , F , M, T , SR)
extends fusion grammars by splicing rules with fixed disjoint context.

I F ,M,T ⊆ Σ, fusion, marker, terminal alphabet
M ∩ (F ∪ F ) = ∅, T ∩ (F ∪ F ) = ∅ = T ∩M
M ∩ (F ∪ F̂ ) = ∅, T ∩ (F ∪ F̂ ) = ∅

I A direct derivation is either

H =⇒
fr(A)

H ′ for some A ∈ F or

H =⇒
m

m · H =
∑

C∈C(H)
m(C) · C for some m : C(H)→ N or

H =⇒
srfdc(A,a)

H ′ for some A ∈ F and a : K → X .

I The generated language

L(SFG) = {remM(Y ) | Z ∗=⇒H,Y ∈ C(H) ∩ (HT∪M −HT )}
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Generative power

ICGT17:
I Fusion grammars can simulate hyperedge replacement

grammars.
I Their membership problem is deciable.

How powerful are splicing/fusion grammars?



Transformation of Chomsky grammars
into splicing/fusion grammars

Let (N,T ,P, S) be a Chomsky grammar.
Let p = (u1 . . . uk , v1 . . . vl ) ∈ P.
Let x1 . . . xn = x1 . . . xi−1u1 . . . ukxi+k . . . xn
Then

x1 . . . xi−1u1 . . . ukxi+k . . . xn =⇒
p

x1 . . . xi−1v1 . . . vl xi+k . . . xn

Adapting a transformation of Chomsky grammars into iterated
splicing systems (cf. [Păun,Rozenberg,Salomaa:1998]).

cyc(x1 . . . xn) = u1

uk

xn
x1

xi−1

xi+k

be
∗=⇒ v1

vl

xn
x1

xi−1

xi+k

be



Transformation of Chomsky grammars
into splicing/fusion grammars

Let (N,T ,P, S) be a Chomsky grammar.
Let p = (u1 . . . uk , v1 . . . vl ) ∈ P.
Let x1 . . . xn = x1 . . . xi−1u1 . . . ukxi+k . . . xn
Then

x1 . . . xi−1u1 . . . ukxi+k . . . xn =⇒
p

x1 . . . xi−1v1 . . . vl xi+k . . . xn

Adapting a transformation of Chomsky grammars into iterated
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Simulating a direct derivation p = (u1 . . . uk , v1 . . . vl ) ∈ P

cyc(x1 . . . xn)act,i =
xn

x1 x2be

xi−1
xixi+1

xn
x1 x2

act
= u1

uk

xn
x1

xi−1

xi+k

be
act

1. splicing, i.e.,

cyc(x1 . . . xn)act,i =⇒
sr(Ap ,u1...,uk ) xi−1

xi+k

xn
x1

Ap

be
+ • • . . . • •

u1 uk

Âp

act

sr(Ap, u1 . . . uk) = •1 •
. . . • •2act

u1 uk ⊇ •1 •2 ←
•1 •2
•
1′ •2′

⊆ •
1 •2
•
1′ •

2′

Ap

Âp

2. fusion, i.e.,
• •. . . • •

v1 vl

Ap

act =⇒
fr(Ap)

+ cyc(x1 . . . xi−1Apxi+k . . . xn)

v1

vl

xn
x1

xi−1

xi+k

be

act
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Moving the act-loop

Q = P ∪ {(x , x) | x ∈ N ∪ T}

i.e., for each x ∈ N ∪ T :
I cx = • •x

Ax

act, and

I sr(Ax , x) = •1 •2act x ⊇ •1 •2 ←
•1 •2
•
1′ •2′

⊆ •
1 •2
•
1′ •

2′

Ax

Âx

1. splicing, i.e.,

cyc(x1 . . . xn)act,i =⇒
sr(Axi ,xi ) xi−1

xi+1

xn
x1

Axi

be
+ • •

xi

Âxi

act

2. fusion, i.e.,
cyc(x1 . . . xi−1Axi xi+k . . . xn) + cxi =⇒

fr(Axi ) xi−1
xixi+1

xn
x1 x2be

act
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Transformation Chomsky grammars into splicing/fusion
grammars

Given Chomsky grammar CG = (N,T ,P,S).
Let Q = P ∪ {(x , x) | x ∈ N ∪ T}.

SFG(CG) = (Z (CG),N(CG), ∅,T (CG), SR(CG))
N(CG) = {Ay | y ∈ N ∪ T ∪ P} ∪ {act}
T (CG) = T ∪ {be}

Z (CG) = •S
be

act + • act +
∑

p=(u,v1...vl )∈Q
• •. . . • •

v1 vl

Ap

act

SR(CG) = {sr(Ap, u1 . . . , uk) | p = (u1 . . . uk , v) ∈ Q}

where

sr(Ap, u1 . . . , uk) = •1 •
. . . • •2act

u1 uk ⊇ •1 •2 ←
•1 •2
•
1′ •2′

⊆ •
1 •2
•
1′ •

2′

Ap

Âp



Theorem I

Let CG = (N,T ,P,S) be a Chomsky grammar
and SFG(CG) the corresponding splicing/fusion grammar.
Then

cyc(L(CG)) = L(SFG(CG)).

CG SFG(CG)

L(CG) cyc(L(CG)) = L(SFG(CG))

transform

generate generate

cyc



Hypergraph grammar HGG = (N , T , P, S)

I N,T ⊆ Σ,T ∩ N = ∅, S ∈ N,
A ∈ N has a type k(A) ∈ N
P is a finite set of rules of the form r = (L a←− K b−→ R)
where L,K ,R ∈ HΣ, K discrete and a injective.

I A rule application H =⇒
r

H ′ (direct derivation) is defined by a
double pushout

L K R

H I H ′
g

a

m d

b

hm′

where matching morphism g : L→ H is subject to the gluing
condition.

I L(HGG) = {X ∈ HT | S• ∗=⇒
P

X}.



Simulating a direct derivation

HGG : r = (L ⊇ K b−→ R)
•
•

•

L =⇒
r

•
•

•

R

⇐⇒

SFG :
•
•

•

L + RAr

•
•

•

2
1

k(Ar )

R together with an
additional Ar -hyperedge
attached to b(1) · · · b(k).

=⇒
srfdc(Ar ,a)

a:k(Ar )→L

•
•

•

Ar
2 1

k(Ar )

+ LÂr

•
•

•

2
1

k(Ar )

+ RAr

•
•

•

2
1

k(Ar )

=⇒
fr(Ar )

•
•

•

R + LÂr

•
•

•

2
1

k(Ar )
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SFG :
•
•

•

L + RAr

•
•

•

2
1

k(Ar )

R together with an
additional Ar -hyperedge
attached to b(1) · · · b(k).

=⇒
srfdc(Ar ,a)

a:k(Ar )→L

•
•

•

Ar
2 1

k(Ar )

+ LÂr

•
•

•

2
1

k(Ar )

+ RAr

•
•

•

2
1

k(Ar )

=⇒
fr(Ar )

•
•

•

R + LÂr

•
•

•

2
1

k(Ar )



Transformation of hypergraph grammars into
splicing/fusion grammars

Connective hypergraph grammar:
Each connected component contains some gluing node and
for each (L ⊇ K b−→ R): if i , j ∈ VK are connected in L, then
b(i), b(j) are connected in R.

Lemma
Connectedness is preserved.

Theorem (2)
Let HGG = (N,T ,P,S) be a connective hypergraph grammar
and SFG(HGG) its corresponding splicing/fusion grammar.
Then

L(HGG) = L(SFG(HGG)).

In other words, splicing/fusion grammars can simulate hypergraph
grammars, but connectedness must be preserved.
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Transformation of hypergraph grammars into
splicing/fusion grammars

SFG(HGG) = (Z (HGG),F (HGG),M(HGG),T (HGG),SR(HGG))

I F (HGG) = {Ar | r = (L ⊇ [k]→ R) ∈ P, k(Ar ) = k},
M(HGG) = {µ} with k(µ) = 0,T (HGG) = T

I F (HGG),F (HGG), F̂ (HGG),M(HGG),T are pairwise disjoint.
I Z (HGG) = S•µ +

∑
r∈P

C(r)

where C(r) for r = (L ⊇ [k] b−→ R) is R together with an
additional Ar -hyperedge attached to b(1) · · · b(k).

I SR(HGG) = {srfdc(Ar , a) | r = (L
a
⊇ [k] −→ R) ∈ P) where

srfdc(Ar , a) = (L
a
⊇ [k(Ar )]

〈1[k(Ar )],1[k(Ar )]〉←−−−−−−−−− [k(Ar )]+[k(Ar )] in+în−−−→ A•r +Â•r



Pushout property

Lemma
Let C be a category with finite coproduct (denoted by +) and
pushouts. Consider the following diagrams:

L K

H I

a

g d

m

(1)

K K + K

H I + L

〈1K , 1K 〉

g ◦ a d + a

〈m, g〉

(2)

Then the left diagram is a pushout if and only if the right diagram
is a pushout.



Conclusion
I We have extended fusion grammars by splicing rules with fixed

disjoint context.
I Transformation of Chomsky grammars into splicing/fusion

grammars.
I Transformation of connective hypergraph grammars into

splicing/fusion grammars.

Further work:
I Are there other meaningful conditions for splicing besides

fixed disjoint context?
I How are DNA computing models related to splicing/fusion

grammars?
I How can we overcome the limitation of generating connected

components?
I Are there interesting examples where one can use all

connected component resulting from splicing?



Thank you! Questions?


