
Verifying Graph Transformation Systems with
Description Logics

Jon H. Brenas1, Rachid Echahed2 and Martin Strecker3

1UTHSC - ORNL, University of Memphis, Tennessee, USA

2CNRS and Université Grenoble Alpes, Grenoble, France

3Université de Toulouse, IRIT, Toulouse, France

June 25th, 2018

ICGT2018 (Toulouse) Brenas, Echahed, Strecker June 25th, 2018 1 / 45

Partial Correctness à la Hoare of Graph and Model
Transformation Systems

To be proven: {Pre(input)} Program {Post(output)}

Program is a graph or model transformation system
input and output are graphs or models
Pre and Post are description logic (DL) formulas over the inputs
and the outputs

ICGT2018 (Toulouse) Brenas, Echahed, Strecker June 25th, 2018 2 / 45

Outline

1 Labeled Graphs or Models

2 Description Logics

3 Graph Transformation Systems

4 A Hoare Logic

ICGT2018 (Toulouse) Brenas, Echahed, Strecker June 25th, 2018 3 / 45

Models/Graphs
Different kinds of nodes and edges

ICGT2018 (Toulouse) Brenas, Echahed, Strecker June 25th, 2018 4 / 45

Logically Decorated Graphs

Let L be a set of formulas, a logically dec-
orated graph G is a tuple (N,E , λN , λE , s, t)
where:

N is a set of nodes,
E is a set of edges,
λN : N → 2L is a node labeling function,
λE : E → L is an edge labeling function
source and target functions: s : E → N
and t : E → N

n0 : l0 n1 : l1

n2 : l2 n3 : l3

n4 : l4 n5 : l4

R0
R1

R2

R3

R4

R5
R6 R7

In this talk, the set L consists of description logic formulas.

ICGT2018 (Toulouse) Brenas, Echahed, Strecker June 25th, 2018 5 / 45

Outline

1 Labeled Graphs or Models

2 Description Logics

3 Graph Transformation Systems

4 A Hoare Logic

ICGT2018 (Toulouse) Brenas, Echahed, Strecker June 25th, 2018 6 / 45

Why considering Description Logics (DLs)?

DLs constitute a formal basis of knowledge representation
languages.

DLs provide logical basis for ontologies.
(E.g., the web ontology language OWL is based on DLs)

Reasoning problems for DLs are decidable (in general)

ICGT2018 (Toulouse) Brenas, Echahed, Strecker June 25th, 2018 7 / 45

DL Syntax

a DL syntax allows one to define:

Concept names, which are equivalent to classical first-order logic
unary predicates,

Role names, which are equivalent to binary predicates and

Individuals, which are equivalent to classical constants.

There are various DLs in the literature, they mainly differ by the logical
operators they offer to construct concept and role expressions or
axioms.

ICGT2018 (Toulouse) Brenas, Echahed, Strecker June 25th, 2018 8 / 45

DL syntax: Concepts and roles
Let C0 (resp. R0 and O) be a set of atomic concepts (resp. atomic
roles and nominals).
Let c0 ∈ C0, r0 ∈ R0, o ∈ O, and n an integer.

The set of concepts C and roles R are defined by:
C := > | c0 | ∃R.C | ¬C | C ∨ C

| o (nominals,O)
| ∃R.Self (self loops,Self)
| (< n R C) (counting quantifiers,Q)

R := r0
| U (universal role,U)
| R−(inverse role, I)

Examples of DL logics: ALC, ALCUO, ALCUI, . . .

ICGT2018 (Toulouse) Brenas, Echahed, Strecker June 25th, 2018 9 / 45

Examples of properties

Examples of some requirements about the organization of a hospital:

All patients of a pediatrician are children:
First-order formula:
∀x , y .Pediatrician(x) ∧ Has patient(x , y)⇒ Child(y)
DL formula (ALCU): ∀U.Pediatrician⇒ ∀Has patient .Child

Dr. Smith is a pediatrician:
First-order formula: ∃x .Dr .Smith = x ∧ Pediatrician(x)
DL formula (ALCUO): ∃U.Dr .Smith ∧ Pediatrician
All patients are a doctor’s patients:
First-order formula:
∀x , y .Patient(x)⇒ Has patient(y , x) ∧ Doctor(y)
DL formula (ALCUI):∀U.Patient ⇒ ∃Has patient−.Doctor

ICGT2018 (Toulouse) Brenas, Echahed, Strecker June 25th, 2018 10 / 45

Examples of properties

Examples of some requirements about the organization of a hospital:

All patients of a pediatrician are children:
First-order formula:
∀x , y .Pediatrician(x) ∧ Has patient(x , y)⇒ Child(y)
DL formula (ALCU): ∀U.Pediatrician⇒ ∀Has patient .Child
Dr. Smith is a pediatrician:
First-order formula: ∃x .Dr .Smith = x ∧ Pediatrician(x)
DL formula (ALCUO): ∃U.Dr .Smith ∧ Pediatrician

All patients are a doctor’s patients:
First-order formula:
∀x , y .Patient(x)⇒ Has patient(y , x) ∧ Doctor(y)
DL formula (ALCUI):∀U.Patient ⇒ ∃Has patient−.Doctor

ICGT2018 (Toulouse) Brenas, Echahed, Strecker June 25th, 2018 10 / 45

Examples of properties

Examples of some requirements about the organization of a hospital:

All patients of a pediatrician are children:
First-order formula:
∀x , y .Pediatrician(x) ∧ Has patient(x , y)⇒ Child(y)
DL formula (ALCU): ∀U.Pediatrician⇒ ∀Has patient .Child
Dr. Smith is a pediatrician:
First-order formula: ∃x .Dr .Smith = x ∧ Pediatrician(x)
DL formula (ALCUO): ∃U.Dr .Smith ∧ Pediatrician
All patients are a doctor’s patients:
First-order formula:
∀x , y .Patient(x)⇒ Has patient(y , x) ∧ Doctor(y)
DL formula (ALCUI):∀U.Patient ⇒ ∃Has patient−.Doctor

ICGT2018 (Toulouse) Brenas, Echahed, Strecker June 25th, 2018 10 / 45

Examples of properties (Continued)

Examples of some requirements about the organization of a hospital:

1 An operation can only be associated with one operating room:
First-order formula:
∀x , y , z.Operation(x) ∧ Scheduled in(x , y) ∧ Scheduled in(x , z) ∧
Operation room(y) ∧Operation room(z)⇒ y = z
DL formula (ALCUQ):
∀U.Operation⇒ (< 2Scheduled in.Operation room)

2 A doctor can not be his/her own patient:
First-order formula: ∀x .Doctor(x)⇒ ¬Has patient(x , x)
DL formula (ALCUQ): ∀U.Doctor ⇒ ¬∃Has patient .SELF

ICGT2018 (Toulouse) Brenas, Echahed, Strecker June 25th, 2018 11 / 45

Examples of properties (Continued)

Examples of some requirements about the organization of a hospital:

1 An operation can only be associated with one operating room:
First-order formula:
∀x , y , z.Operation(x) ∧ Scheduled in(x , y) ∧ Scheduled in(x , z) ∧
Operation room(y) ∧Operation room(z)⇒ y = z
DL formula (ALCUQ):
∀U.Operation⇒ (< 2Scheduled in.Operation room)

2 A doctor can not be his/her own patient:
First-order formula: ∀x .Doctor(x)⇒ ¬Has patient(x , x)
DL formula (ALCUQ): ∀U.Doctor ⇒ ¬∃Has patient .SELF

ICGT2018 (Toulouse) Brenas, Echahed, Strecker June 25th, 2018 11 / 45

Outline

1 Labeled Graphs or Models

2 Description Logics

3 Graph Transformation Systems

4 A Hoare Logic

ICGT2018 (Toulouse) Brenas, Echahed, Strecker June 25th, 2018 12 / 45

Graph Transformation

There are several ways to transform graphs:
I Imperative Programs
I Rule-Based Programs
I Knowledge-Base updates
I Non-classical Logics
I ...

ICGT2018 (Toulouse) Brenas, Echahed, Strecker June 25th, 2018 13 / 45

Graph Transformation

There are several ways to transform graphs:
I Imperative Programs
I Rule-Based Programs

F Algebraic/Categorial approaches (DPO, SPO, SqPO, AGREE)
F Algorithmic approaches

I Knowledge-Base updates
I Non-classical Logics
I ...

ICGT2018 (Toulouse) Brenas, Echahed, Strecker June 25th, 2018 14 / 45

Graph Transformation: Considered Rules

The considered Graph Rewriting rules are of the form L→ R where:
L is a graph
R is a sequence of elementary actions

ICGT2018 (Toulouse) Brenas, Echahed, Strecker June 25th, 2018 15 / 45

Some Elementary Actions
Let C0 (resp. R0) be a set of node (resp. edge) labels. An elementary
action, say a, may be of the following forms:

a node addition addN(i) (resp. node deletion delN(i))

a node label addition addC(i , c) (resp. node label deletion
delC(i , c)) where i is a node and c is a label in C0.
an edge addition addE(e, i , j , r) (resp. edge deletion delE(e, i , j , r))
where e is an edge, i and j are nodes and r is an edge label in R0.
a global edge redirection i � j where i and j are nodes. It
redirects all incoming edges of i towards j .
a merge action mrg(i , j) where i and j are nodes.
a clone action cl(i , j ,Lin,Lout ,Ll in,Ll out ,Ll loop) where i and j are
nodes and Lin, Lout , Ll in, Ll out and Ll loop are subsets of R0. It
clones a node i by creating a new node j and connects j to the
rest of a host graph according to different information given in the
parameters Lin,Lout ,Ll in,Ll out ,Ll loop.

ICGT2018 (Toulouse) Brenas, Echahed, Strecker June 25th, 2018 16 / 45

Some Elementary Actions
Let C0 (resp. R0) be a set of node (resp. edge) labels. An elementary
action, say a, may be of the following forms:

a node addition addN(i) (resp. node deletion delN(i))
a node label addition addC(i , c) (resp. node label deletion
delC(i , c)) where i is a node and c is a label in C0.

an edge addition addE(e, i , j , r) (resp. edge deletion delE(e, i , j , r))
where e is an edge, i and j are nodes and r is an edge label in R0.
a global edge redirection i � j where i and j are nodes. It
redirects all incoming edges of i towards j .
a merge action mrg(i , j) where i and j are nodes.
a clone action cl(i , j ,Lin,Lout ,Ll in,Ll out ,Ll loop) where i and j are
nodes and Lin, Lout , Ll in, Ll out and Ll loop are subsets of R0. It
clones a node i by creating a new node j and connects j to the
rest of a host graph according to different information given in the
parameters Lin,Lout ,Ll in,Ll out ,Ll loop.

ICGT2018 (Toulouse) Brenas, Echahed, Strecker June 25th, 2018 16 / 45

Some Elementary Actions
Let C0 (resp. R0) be a set of node (resp. edge) labels. An elementary
action, say a, may be of the following forms:

a node addition addN(i) (resp. node deletion delN(i))
a node label addition addC(i , c) (resp. node label deletion
delC(i , c)) where i is a node and c is a label in C0.
an edge addition addE(e, i , j , r) (resp. edge deletion delE(e, i , j , r))
where e is an edge, i and j are nodes and r is an edge label in R0.

a global edge redirection i � j where i and j are nodes. It
redirects all incoming edges of i towards j .
a merge action mrg(i , j) where i and j are nodes.
a clone action cl(i , j ,Lin,Lout ,Ll in,Ll out ,Ll loop) where i and j are
nodes and Lin, Lout , Ll in, Ll out and Ll loop are subsets of R0. It
clones a node i by creating a new node j and connects j to the
rest of a host graph according to different information given in the
parameters Lin,Lout ,Ll in,Ll out ,Ll loop.

ICGT2018 (Toulouse) Brenas, Echahed, Strecker June 25th, 2018 16 / 45

Some Elementary Actions
Let C0 (resp. R0) be a set of node (resp. edge) labels. An elementary
action, say a, may be of the following forms:

a node addition addN(i) (resp. node deletion delN(i))
a node label addition addC(i , c) (resp. node label deletion
delC(i , c)) where i is a node and c is a label in C0.
an edge addition addE(e, i , j , r) (resp. edge deletion delE(e, i , j , r))
where e is an edge, i and j are nodes and r is an edge label in R0.
a global edge redirection i � j where i and j are nodes. It
redirects all incoming edges of i towards j .

a merge action mrg(i , j) where i and j are nodes.
a clone action cl(i , j ,Lin,Lout ,Ll in,Ll out ,Ll loop) where i and j are
nodes and Lin, Lout , Ll in, Ll out and Ll loop are subsets of R0. It
clones a node i by creating a new node j and connects j to the
rest of a host graph according to different information given in the
parameters Lin,Lout ,Ll in,Ll out ,Ll loop.

ICGT2018 (Toulouse) Brenas, Echahed, Strecker June 25th, 2018 16 / 45

Some Elementary Actions
Let C0 (resp. R0) be a set of node (resp. edge) labels. An elementary
action, say a, may be of the following forms:

a node addition addN(i) (resp. node deletion delN(i))
a node label addition addC(i , c) (resp. node label deletion
delC(i , c)) where i is a node and c is a label in C0.
an edge addition addE(e, i , j , r) (resp. edge deletion delE(e, i , j , r))
where e is an edge, i and j are nodes and r is an edge label in R0.
a global edge redirection i � j where i and j are nodes. It
redirects all incoming edges of i towards j .
a merge action mrg(i , j) where i and j are nodes.

a clone action cl(i , j ,Lin,Lout ,Ll in,Ll out ,Ll loop) where i and j are
nodes and Lin, Lout , Ll in, Ll out and Ll loop are subsets of R0. It
clones a node i by creating a new node j and connects j to the
rest of a host graph according to different information given in the
parameters Lin,Lout ,Ll in,Ll out ,Ll loop.

ICGT2018 (Toulouse) Brenas, Echahed, Strecker June 25th, 2018 16 / 45

Some Elementary Actions
Let C0 (resp. R0) be a set of node (resp. edge) labels. An elementary
action, say a, may be of the following forms:

a node addition addN(i) (resp. node deletion delN(i))
a node label addition addC(i , c) (resp. node label deletion
delC(i , c)) where i is a node and c is a label in C0.
an edge addition addE(e, i , j , r) (resp. edge deletion delE(e, i , j , r))
where e is an edge, i and j are nodes and r is an edge label in R0.
a global edge redirection i � j where i and j are nodes. It
redirects all incoming edges of i towards j .
a merge action mrg(i , j) where i and j are nodes.
a clone action cl(i , j ,Lin,Lout ,Ll in,Ll out ,Ll loop) where i and j are
nodes and Lin, Lout , Ll in, Ll out and Ll loop are subsets of R0. It
clones a node i by creating a new node j and connects j to the
rest of a host graph according to different information given in the
parameters Lin,Lout ,Ll in,Ll out ,Ll loop.

ICGT2018 (Toulouse) Brenas, Echahed, Strecker June 25th, 2018 16 / 45

Graph Rewrite Systems: Example

ρ0: l : LLIN ∧ ∃ins in.> i : DDT delN(l)

ρ1:

l : LLIN

i : Insecticide

m : ModeOfAction

h : House

l ′ : LLIN

i ′ : Insecticide

m′ : ModeOfAction ∧ ¬m

cl(l ′, l ′′,L);
delE(e, l ,h, ins in);

addE(e′, l ′′,h, ins in)

has ins has ins

has moa has moa

e : ins in

has ins

ICGT2018 (Toulouse) Brenas, Echahed, Strecker June 25th, 2018 17 / 45

Match

To be able to apply rules, we need to define when they can be
applied.

ICGT2018 (Toulouse) Brenas, Echahed, Strecker June 25th, 2018 18 / 45

Match

Definition: Match
A match h between a lhs L and a graph G is a pair of functions
h = (hN ,hE), with hN : NL → NG and hE : EL → EG such that:

1 ∀e ∈ EL, sG(hE(e)) = hN(sL(e))
2 ∀e ∈ EL, tG(hE(e)) = hN(tL(e))
3 ∀n ∈ NL,∀c ∈ λL

N(n),h
N(n) |= c

4 ∀e ∈ EL, λG
E (h

E(e)) = λL
E(e)

Remark: The third condition says that for every node, n, of the lhs, the
node to which it is associated, h(n), in G has to satisfy every concept
in λL

N(n). This condition clearly expresses additional negative and
positive conditions which are added to the “structural” pattern
matching.

ICGT2018 (Toulouse) Brenas, Echahed, Strecker June 25th, 2018 19 / 45

Rewrite Step and Rewrite Derivation

Definition: Rewrite step
Let ρ = L→ R be a rule and G and G′ be two graphs.
G rewrites into G′ using rule ρ, noted G→ρ G′ iff:

There exists a match h from the left-hand side L to G, and
G h(R) G′. I.e., G′ is the result of performing h(R) on G

Definition: Rewrite derivation
Let R be graph transformation system and G and G′ be two
graphs.
A rewrite derivation from G to G′, noted G→R G′, is a sequence
G→ρ0 G1 →ρ1 ...→ρn G′ such that ∀i .ρi ∈ R.

ICGT2018 (Toulouse) Brenas, Echahed, Strecker June 25th, 2018 20 / 45

Strategies

A strategy is a word of the following language defined by s ::=

I ρ (application of a rule)
I s; s (sequential composition of strategies)
I s ⊕ s (non-deterministic choice between two strategies)
I s∗ (iteration as long as possible of a strategy)
I . . .

Example: Strategy strat = s0; s∗1; s2 performs once the
sub-strategy s0, iterates as much as possible sub-strategy s1,
before performing once sub-strategy s2.
A derivation G→ρ0 G1 →ρ1 ...→ρn G′ is controlled by a strategy
strat iff the word ρ0ρ1 . . . ρn belongs to the language defined by
strategy strat .

ICGT2018 (Toulouse) Brenas, Echahed, Strecker June 25th, 2018 21 / 45

Strategies

A strategy is a word of the following language defined by s ::=

I ρ (application of a rule)
I s; s (sequential composition of strategies)
I s ⊕ s (non-deterministic choice between two strategies)
I s∗ (iteration as long as possible of a strategy)
I . . .

Example: Strategy strat = s0; s∗1; s2 performs once the
sub-strategy s0, iterates as much as possible sub-strategy s1,
before performing once sub-strategy s2.

A derivation G→ρ0 G1 →ρ1 ...→ρn G′ is controlled by a strategy
strat iff the word ρ0ρ1 . . . ρn belongs to the language defined by
strategy strat .

ICGT2018 (Toulouse) Brenas, Echahed, Strecker June 25th, 2018 21 / 45

Strategies

A strategy is a word of the following language defined by s ::=

I ρ (application of a rule)
I s; s (sequential composition of strategies)
I s ⊕ s (non-deterministic choice between two strategies)
I s∗ (iteration as long as possible of a strategy)
I . . .

Example: Strategy strat = s0; s∗1; s2 performs once the
sub-strategy s0, iterates as much as possible sub-strategy s1,
before performing once sub-strategy s2.
A derivation G→ρ0 G1 →ρ1 ...→ρn G′ is controlled by a strategy
strat iff the word ρ0ρ1 . . . ρn belongs to the language defined by
strategy strat .

ICGT2018 (Toulouse) Brenas, Echahed, Strecker June 25th, 2018 21 / 45

Outline

1 Labeled Graphs or Models

2 Description Logics

3 Graph Transformation Systems

4 A Hoare Logic

ICGT2018 (Toulouse) Brenas, Echahed, Strecker June 25th, 2018 22 / 45

Specification and Correctness

Definition: Specification
A specification spec is a triple (Pre, strat ,Post) where:

Pre is a DL formula called the precondition
strat is a strategy with respect to a graph transformation
system R
Post is a DL formula called the postcondition.

Definition: Correctness
A specification spec = (Pre, strat ,Post) is said to be correct iff:

for all graphs G,
for all graphs G′ such that G→strat G′

if G |= Pre then G′ |= Post

ICGT2018 (Toulouse) Brenas, Echahed, Strecker June 25th, 2018 23 / 45

Floyd-Hoare Logics

Let R be a graph transformation system
Let strat be a strategy and ρ0 . . . ρn−1ρn an element of strat
Let Pre and Post be two DL formulas
Aim: Prove that specification spec = (Pre, strat ,Post) is correct

Pre
ρ0;
...

ρn−1;

ρn;
Post

ICGT2018 (Toulouse) Brenas, Echahed, Strecker June 25th, 2018 24 / 45

Floyd-Hoare Logics

Let R be a graph transformation system
Let strat be a strategy and ρ0 . . . ρn−1ρn an element of strat
Let Pre and Post be two DL formulas
Aim: Prove that specification spec = (Pre, strat ,Post) is correct

Pre
a0;
...

am−1;

am;
Post

ICGT2018 (Toulouse) Brenas, Echahed, Strecker June 25th, 2018 25 / 45

Floyd-Hoare Logics

Let R be a graph transformation system
Let strat be a strategy and ρ0 . . . ρn−1ρn an element of strat
Let Pre and Post be two DL formulas
Aim: Prove that specification spec = (Pre, strat ,Post) is correct

Pre
a0;
...

am−1;
Post [am]
am;
Post

ICGT2018 (Toulouse) Brenas, Echahed, Strecker June 25th, 2018 26 / 45

Floyd-Hoare Logics

Let R be a graph transformation system
Let strat be a strategy and ρ0 . . . ρn−1ρn an element of strat
Let Pre and Post be two DL formulas
Aim: Prove that specification spec = (Pre, strat ,Post) is correct

Pre
a0;
...
Post [am][am−1]
am−1;
Post [am]
am;
Post

ICGT2018 (Toulouse) Brenas, Echahed, Strecker June 25th, 2018 27 / 45

Floyd-Hoare Logics

Let R be a graph transformation system
Let strat be a strategy and ρ0 . . . ρn−1ρn an element of strat
Let Pre and Post be two DL formulas
Aim: Prove that specification spec = (Pre, strat ,Post) is correct

Pre⇒ Post [am][am−1]...[a0]
a0;
...
Post [am][am−1]
am−1;
Post [am]
am;
Post

ICGT2018 (Toulouse) Brenas, Echahed, Strecker June 25th, 2018 28 / 45

Substitutions

Definition: Substitution
A substitution, written [a], is associated to each elementary action
a, such that for all graphs G and DL formulas φ,
(G |= φ[a])⇔ (G′ |= φ) where G’ is obtained from G after
application of action a,i.e., G a G′.

G a G′

φ[a] φ

ICGT2018 (Toulouse) Brenas, Echahed, Strecker June 25th, 2018 29 / 45

Generating Weakest Preconditions

We define wp(a,Q) the weakest precondition for an elementary action
a and a formula Q.

wp(a, Q) = Q[a]

ICGT2018 (Toulouse) Brenas, Echahed, Strecker June 25th, 2018 30 / 45

Generating Weakest Preconditions

We define wp(a,Q) the weakest precondition for an elementary action
a and a formula Q.

wp(a, Q) = Q[a] How to handle substitutions?

ICGT2018 (Toulouse) Brenas, Echahed, Strecker June 25th, 2018 31 / 45

Floyd-Hoare Logics: a classical example
The assignment instruction (action)

Weakest precondition: wp(Post , [x := X + 1]) ≡x > 5[x := X + 1]

Action: x := x + 1;

Post: Post ≡ x > 5

ICGT2018 (Toulouse) Brenas, Echahed, Strecker June 25th, 2018 32 / 45

Floyd-Hoare Logics: a classical example
The assignment instruction (action)

wp(Post , [x := X + 1]) ≡x > 5[x := X + 1] ≡ x > 4

Action: x := x + 1;

Post: Post ≡ x > 5

ICGT2018 (Toulouse) Brenas, Echahed, Strecker June 25th, 2018 33 / 45

Floyd-Hoare Logics: a basic case

wp(Post ,AddE(e,a,b,R)) ≡ ∃U.(a ∧ (> 5R.>))[AddE(e,a,b,R)]

Action: AddE(e,a,b,R);

Post: ∃U.(a ∧ (> 5R.>))

ICGT2018 (Toulouse) Brenas, Echahed, Strecker June 25th, 2018 34 / 45

Floyd-Hoare Logics: a basic case

wp(Post ,AddE(e,a,b,R)) ≡ ∃U.(a ∧ (> 5R.>))[AddE(e,a,b,R)] ≡
(∃U.(a ∧ ∃R.b) => ∃U.(a ∧ (> 5R.>)))
∧(∃U.(a ∧ ∀R.¬b) => ∃U.(a ∧ (> 4R.>)))

Action: AddE(e,a,b,R);

Post: ∃U.(a ∧ (> 5R.>))

ICGT2018 (Toulouse) Brenas, Echahed, Strecker June 25th, 2018 35 / 45

Closure Under Substitutions

Definition: Closure Under Substitution
A logic L is said to be closed under substitution iff for every formula
φ ∈ L, every substitution [a], φ[a] ∈ L.

ICGT2018 (Toulouse) Brenas, Echahed, Strecker June 25th, 2018 36 / 45

DLs and Closure Under Substitutions

Theorem: The description logics
ALCUO,ALCUOI,ALCQUOI,ALCUOSelf ,ALCUOISelf , and
ALCQUOISelf are closed under substitutions.

Theorem: The description logics ALCQUO and ALCQUOSelf are not
closed under substitutions.

ICGT2018 (Toulouse) Brenas, Echahed, Strecker June 25th, 2018 37 / 45

Generating Weakest Preconditions (continued)

We define wp(strat ,Q) the weakest precondition for a strategy strat
and a formula Q.

wp(s0; s1, Q) = wp(s0,wp(s1, Q))

wp(s0 ⊕ s1, Q) = wp(s0,Q) ∧ wp(s1,Q)

wp(ρ, Q) = App(ρ)⇒ Q[an]...[a0] where ρ’s right-hand side is
a0; ...;an

ICGT2018 (Toulouse) Brenas, Echahed, Strecker June 25th, 2018 38 / 45

Generating Weakest Preconditions

We define wp(strat ,Q) the weakest precondition for a strategy strat
and a formula Q.

wp(ρ, Q) = App(ρ)⇒ Q[an]...[a0]

Definition: Application Condition
Given a rule ρ, the application condition App(ρ) is a formula such
that a graph G |= App(ρ) iff there exists a match between the
left-hand side of ρ and G

ICGT2018 (Toulouse) Brenas, Echahed, Strecker June 25th, 2018 39 / 45

Generating Weakest Preconditions

We define wp(strat ,Q) the weakest precondition for a strategy strat
and a formula Q.

wp(a, Q) = Q[a]
wp(ε, Q) = Q
wp(a;α, Q) = wp(a,wp(α,Q))

wp(s0; s1, Q) = wp(s0,wp(s1, Q))

wp(s0 ⊕ s1, Q) = wp(s0,Q) ∧ wp(s1,Q)

wp(ρ, Q) = App(ρ)⇒ Q[an]...[a0]

ICGT2018 (Toulouse) Brenas, Echahed, Strecker June 25th, 2018 40 / 45

Generating Weakest Preconditions

wp(strat ,Q) computes the weakest precondition for a strategy strat
and a formula Q.

wp(a, Q) = Q[a]
wp(ε, Q) = Q
wp(a;α, Q) = wp(a,wp(α,Q))

wp(s0; s1, Q) = wp(s0,wp(s1, Q))

wp(s0 ⊕ s1, Q) = wp(s0,Q) ∧ wp(s1,Q)

wp(ρ, Q) = App(ρ)⇒ Q[an]...[a0]

wp(s∗, Q) = invs

ICGT2018 (Toulouse) Brenas, Echahed, Strecker June 25th, 2018 41 / 45

Verification Conditions

vc(ρ, Q) = >
vc(s0; s1, Q) = vc(s0,wp(s1, Q)) ∧ vc(s1,Q)

vc(s0 ⊕ s1, Q) = vc(s0,Q) ∧ vc(s1,Q)

vc(s∗, Q) =
(invs ∧ ¬App(s)⇒ Q)∧ (invs ∧ App(s)⇒ wp(s, invs))∧ vc(s, invs)

ICGT2018 (Toulouse) Brenas, Echahed, Strecker June 25th, 2018 42 / 45

Soundness of the verification

Definition: Correctness formula
Let spec = (Pre, strat ,Post) be a specification. We call
correctness formula the formula
correct(spec) = (Pre⇒ wp(strat ,Post)) ∧ vc(strat ,Post).

Theorem:
If correct(spec) is valid, then for all graphs G, G′ such that
G→strat G′, G |= Pre implies G′ |= Post .

ICGT2018 (Toulouse) Brenas, Echahed, Strecker June 25th, 2018 43 / 45

Decidability of the verification

Theorem:
Let spec = (Pre, strat ,Post) be a specification using one of the
following DL logics ALCUO, ALCUOI, ALCQUOI, ALCUOSelf ,
ALCUOISelf , and ALCQUOISelf . Then, the correctness of spec
is decidable.

ICGT2018 (Toulouse) Brenas, Echahed, Strecker June 25th, 2018 44 / 45

Conclusion

We identified several DL logics that can be used for the verification
of graph/model transformation systems (those closed under
substitutions)

We identified DL logics which are not closed under substitutions
and thus cannot be involved in the computation of weakest
preconditions
The considered graph transformation systems are featuring
actions such as node cloning and merging, in addition to classical
node and edge addition and deletion.
The considered graphs/models are assumed to be labeled by by
concepts and roles of the considered DL logics.
Future work:

I An implementation with connections to SMT solvers
I Allow the use of data as labels in addition to logical formulas
I Devise other decidable logics

ICGT2018 (Toulouse) Brenas, Echahed, Strecker June 25th, 2018 45 / 45

Conclusion

We identified several DL logics that can be used for the verification
of graph/model transformation systems (those closed under
substitutions)
We identified DL logics which are not closed under substitutions
and thus cannot be involved in the computation of weakest
preconditions

The considered graph transformation systems are featuring
actions such as node cloning and merging, in addition to classical
node and edge addition and deletion.
The considered graphs/models are assumed to be labeled by by
concepts and roles of the considered DL logics.
Future work:

I An implementation with connections to SMT solvers
I Allow the use of data as labels in addition to logical formulas
I Devise other decidable logics

ICGT2018 (Toulouse) Brenas, Echahed, Strecker June 25th, 2018 45 / 45

Conclusion

We identified several DL logics that can be used for the verification
of graph/model transformation systems (those closed under
substitutions)
We identified DL logics which are not closed under substitutions
and thus cannot be involved in the computation of weakest
preconditions
The considered graph transformation systems are featuring
actions such as node cloning and merging, in addition to classical
node and edge addition and deletion.

The considered graphs/models are assumed to be labeled by by
concepts and roles of the considered DL logics.
Future work:

I An implementation with connections to SMT solvers
I Allow the use of data as labels in addition to logical formulas
I Devise other decidable logics

ICGT2018 (Toulouse) Brenas, Echahed, Strecker June 25th, 2018 45 / 45

Conclusion

We identified several DL logics that can be used for the verification
of graph/model transformation systems (those closed under
substitutions)
We identified DL logics which are not closed under substitutions
and thus cannot be involved in the computation of weakest
preconditions
The considered graph transformation systems are featuring
actions such as node cloning and merging, in addition to classical
node and edge addition and deletion.
The considered graphs/models are assumed to be labeled by by
concepts and roles of the considered DL logics.

Future work:
I An implementation with connections to SMT solvers
I Allow the use of data as labels in addition to logical formulas
I Devise other decidable logics

ICGT2018 (Toulouse) Brenas, Echahed, Strecker June 25th, 2018 45 / 45

Conclusion

We identified several DL logics that can be used for the verification
of graph/model transformation systems (those closed under
substitutions)
We identified DL logics which are not closed under substitutions
and thus cannot be involved in the computation of weakest
preconditions
The considered graph transformation systems are featuring
actions such as node cloning and merging, in addition to classical
node and edge addition and deletion.
The considered graphs/models are assumed to be labeled by by
concepts and roles of the considered DL logics.
Future work:

I An implementation with connections to SMT solvers
I Allow the use of data as labels in addition to logical formulas
I Devise other decidable logics

ICGT2018 (Toulouse) Brenas, Echahed, Strecker June 25th, 2018 45 / 45

	Labeled Graphs or Models
	Description Logics
	Graph Transformation Systems
	A Hoare Logic

