Verifying Graph Transformation Systems with Description Logics

Jon H. Brenas¹, Rachid Echahed² and Martin Strecker³

¹UTHSC - ORNL, University of Memphis, Tennessee, USA

²CNRS and Université Grenoble Alpes, Grenoble, France

³Université de Toulouse, IRIT, Toulouse, France

June 25th, 2018

Partial Correctness à la Hoare of Graph and Model Transformation Systems

To be proven: {*Pre(input)*} *Program* {*Post(output)*}

- Program is a graph or model transformation system
- input and output are graphs or models
- *Pre* and *Post* are description logic (DL) formulas over the inputs and the outputs

Outline

Labeled Graphs or Models

- 2 Description Logics
- 3 Graph Transformation Systems
- A Hoare Logic

э

< ロ > < 同 > < 回 > < 回 >

Models/Graphs

• Different kinds of nodes and edges

ICGT2018 (Toulouse)

э

< ∃⇒

< me

Logically Decorated Graphs

Let \mathcal{L} be a set of formulas, a logically decorated graph *G* is a tuple $(N, E, \lambda_N, \lambda_E, s, t)$ where:

- N is a set of nodes,
- E is a set of edges,
- $\lambda_N : N \to 2^{\mathcal{L}}$ is a node labeling function,
- $\lambda_E: E \to \mathcal{L}$ is an edge labeling function
- source and target functions: s : E → N and t : E → N

In this talk, the set \mathcal{L} consists of description logic formulas.

B + 4 B +

Outline

Labeled Graphs or Models

2 Description Logics

3 Graph Transformation Systems

A Hoare Logic

ICGT2018 (Toulouse)

Why considering Description Logics (DLs)?

- DLs constitute a formal basis of knowledge representation languages.
- DLs provide logical basis for ontologies.
 (E.g., the web ontology language OWL is based on DLs)
- Reasoning problems for DLs are decidable (in general)

E N 4 E N

DL Syntax

a DL syntax allows one to define:

- Concept names, which are equivalent to classical first-order logic unary predicates,
- Role names, which are equivalent to binary predicates and
- Individuals, which are equivalent to classical constants.

There are various DLs in the literature, they mainly differ by the logical operators they offer to construct concept and role expressions or axioms.

< 口 > < 同 > < 回 > < 回 > < 回 > <

DL syntax: Concepts and roles

Let C_0 (resp. \mathcal{R}_0 and \mathcal{O}) be a set of atomic concepts (resp. atomic roles and nominals).

Let $c_0 \in C_0$, $r_0 \in \mathcal{R}_0$, $o \in \mathcal{O}$, and *n* an integer.

The set of concepts *C* and roles *R* are defined by:

 $C := \top | c_0 | \exists R.C | \neg C | C \lor C$ | o (nominals, \mathcal{O}) | $\exists R.Self$ (self loops, Self) | (< n R C) (counting quantifiers, \mathcal{Q}) $R := r_0$ | U (universal role, \mathcal{U}) | R^- (inverse role, \mathcal{I})

Examples of DL logics: ALC, ALCUO, ALCUI, ...

Examples of properties

Examples of some requirements about the organization of a hospital:

 All patients of a pediatrician are children: First-order formula: ∀x, y.Pediatrician(x) ∧ Has_patient(x, y) ⇒ Child(y) DL formula (ALCU): ∀U.Pediatrician ⇒ ∀Has_patient.Child

4 3 5 4 3 5 5

Examples of properties

Examples of some requirements about the organization of a hospital:

- All patients of a pediatrician are children: First-order formula: ∀x, y.Pediatrician(x) ∧ Has_patient(x, y) ⇒ Child(y) DL formula (ALCU): ∀U.Pediatrician ⇒ ∀Has_patient.Child
- Dr. Smith is a pediatrician: First-order formula: ∃x.Dr.Smith = x ∧ Pediatrician(x) DL formula (ALCUO): ∃U.Dr.Smith ∧ Pediatrician

Examples of properties

Examples of some requirements about the organization of a hospital:

- All patients of a pediatrician are children: First-order formula: ∀x, y.Pediatrician(x) ∧ Has_patient(x, y) ⇒ Child(y) DL formula (ALCU): ∀U.Pediatrician ⇒ ∀Has_patient.Child
- Dr. Smith is a pediatrician: First-order formula: ∃x.Dr.Smith = x ∧ Pediatrician(x) DL formula (ALCUO): ∃U.Dr.Smith ∧ Pediatrician
- All patients are a doctor's patients: First-order formula: ∀x, y.Patient(x) ⇒ Has_patient(y, x) ∧ Doctor(y) DL formula (ALCUI):∀U.Patient ⇒ ∃Has_patient⁻.Doctor

Examples of properties (Continued)

Examples of some requirements about the organization of a hospital:

An operation can only be associated with one operating room: First-order formula: ∀x, y, z.Operation(x) ∧ Scheduled_in(x, y) ∧ Scheduled_in(x, z) ∧

 $Operation_room(y) \land Operation_room(z) \Rightarrow y = z$

DL formula (ALCUQ):

 $\forall U.Operation \Rightarrow (< 2Scheduled_in.Operation_room)$

イロト イポト イラト イラト

Examples of properties (Continued)

Examples of some requirements about the organization of a hospital:

An operation can only be associated with one operating room: First-order formula:

 $\forall x, y, z. Operation(x) \land Scheduled_in(x, y) \land Scheduled_in(x, z) \land Operation_room(y) \land Operation_room(z) \Rightarrow y = z$ DL formula (ALCUQ): $\forall U. Operation \Rightarrow (< 2Scheduled_in. Operation_room)$

② A doctor can not be his/her own patient: First-order formula: $\forall x.Doctor(x) \Rightarrow \neg Has_patient(x, x)$ DL formula (*ALCUQ*): $\forall U.Doctor \Rightarrow \neg \exists Has_patient.SELF$

3

Outline

Labeled Graphs or Models

2 Description Logics

Graph Transformation Systems

4 Hoare Logic

э

Image: A matrix and a matrix

Graph Transformation

• There are several ways to transform graphs:

- Imperative Programs
- Rule-Based Programs
- Knowledge-Base updates
- Non-classical Logics
- ▶ ...

A b

Graph Transformation

• There are several ways to transform graphs:

- Imperative Programs
- Rule-Based Programs
 - Algebraic/Categorial approaches (DPO, SPO, SqPO, AGREE)
 - ★ Algorithmic approaches
- Knowledge-Base updates
- Non-classical Logics

▶ ...

A (10) A (10) A (10)

Graph Transformation: Considered Rules

The considered Graph Rewriting rules are of the form $L \rightarrow R$ where:

- *L* is a graph
- *R* is a sequence of elementary actions

Let C_0 (resp. R_0) be a set of node (resp. edge) labels. An *elementary action*, say *a*, may be of the following forms:

• a node addition $add_N(i)$ (resp. node deletion $del_N(i)$)

3

イロト イポト イラト イラト

Let C_0 (resp. \mathcal{R}_0) be a set of node (resp. edge) labels. An *elementary action*, say *a*, may be of the following forms:

- a node addition $add_N(i)$ (resp. node deletion $del_N(i)$)
- a node label addition add_C(i, c) (resp. node label deletion del_C(i, c)) where i is a node and c is a label in C₀.

3

イロト イポト イラト イラト

Let C_0 (resp. \mathcal{R}_0) be a set of node (resp. edge) labels. An *elementary action*, say *a*, may be of the following forms:

- a node addition $add_N(i)$ (resp. node deletion $del_N(i)$)
- a node label addition add_C(i, c) (resp. node label deletion del_C(i, c)) where i is a node and c is a label in C₀.
- an edge addition add_E(e, i, j, r) (resp. edge deletion del_E(e, i, j, r)) where e is an edge, i and j are nodes and r is an edge label in R₀.

3

Let C_0 (resp. \mathcal{R}_0) be a set of node (resp. edge) labels. An *elementary action*, say *a*, may be of the following forms:

- a node addition $add_N(i)$ (resp. node deletion $del_N(i)$)
- a node label addition add_C(i, c) (resp. node label deletion del_C(i, c)) where i is a node and c is a label in C₀.
- an edge addition add_E(e, i, j, r) (resp. edge deletion del_E(e, i, j, r)) where e is an edge, i and j are nodes and r is an edge label in R₀.
- a global edge redirection i >> j where i and j are nodes. It redirects all incoming edges of i towards j.

Let C_0 (resp. \mathcal{R}_0) be a set of node (resp. edge) labels. An *elementary action*, say *a*, may be of the following forms:

- a node addition $add_N(i)$ (resp. node deletion $del_N(i)$)
- a node label addition add_C(i, c) (resp. node label deletion del_C(i, c)) where i is a node and c is a label in C₀.
- an edge addition add_E(e, i, j, r) (resp. edge deletion del_E(e, i, j, r)) where e is an edge, i and j are nodes and r is an edge label in R₀.
- a global edge redirection i ≫ j where i and j are nodes. It redirects all incoming edges of i towards j.
- a *merge action mrg(i,j)* where *i* and *j* are nodes.

Let C_0 (resp. \mathcal{R}_0) be a set of node (resp. edge) labels. An *elementary action*, say *a*, may be of the following forms:

- a node addition $add_N(i)$ (resp. node deletion $del_N(i)$)
- a node label addition add_C(i, c) (resp. node label deletion del_C(i, c)) where i is a node and c is a label in C₀.
- an edge addition add_E(e, i, j, r) (resp. edge deletion del_E(e, i, j, r)) where e is an edge, i and j are nodes and r is an edge label in R₀.
- a global edge redirection i ≫ j where i and j are nodes. It redirects all incoming edges of i towards j.
- a merge action mrg(i, j) where i and j are nodes.
- a *clone action cl(i, j, L_{in}, L_{out}, L_{I_in}, L_{I_out}, L_{I_loop})* where *i* and *j* are nodes and *L_{in}, L_{out}, L_{I_in}, L_{I_out}* and *L_{I_loop}* are subsets of *R*₀. It clones a node *i* by creating a new node *j* and connects *j* to the rest of a host graph according to different information given in the parameters *L_{in}, L_{out}, L_{I_out}, L_{I_out}, L_{I_loop}*.

3

イロト 不得 トイヨト イヨト

Graph Rewrite Systems: Example

$$\rho_{0}: \underbrace{(I: LLIN \land \exists ins_in.\top)}_{has_ins} \underbrace{(i: DDT)}_{has_ins} \underbrace{(i: DDT)}_{has_ins} \underbrace{del_{N}(I)}_{has_ins} \underbrace{del_{N}(I)}$$

Match

• To be able to apply rules, we need to define when they can be applied.

< 🗇 🕨

Match

Definition: Match A match h between a lhs L and a graph G is a pair of functions $h = (h^N, h^E)$, with $h^N : N^L \to N^G$ and $h^E : E^L \to E^G$ such that: • $\forall e \in E^L, s^G(h^E(e)) = h^N(s^L(e))$ • $\forall e \in E^L, t^G(h^E(e)) = h^N(t^L(e))$ • $\forall n \in N^L, \forall c \in \lambda_N^L(n), h^N(n) \models c$ • $\forall e \in E^L, \lambda_E^G(h^E(e)) = \lambda_E^L(e)$

Remark: The third condition says that for every node, *n*, of the lhs, the node to which it is associated, h(n), in *G* has to satisfy every concept in $\lambda_N^L(n)$. This condition clearly expresses additional negative and positive conditions which are added to the "structural" pattern matching.

Rewrite Step and Rewrite Derivation

Definition: Rewrite step

Let $\rho = L \rightarrow R$ be a rule and *G* and *G'* be two graphs. *G* rewrites into *G'* using rule ρ , noted $G \rightarrow_{\rho} G'$ iff:

- There exists a match h from the left-hand side L to G, and
- $G \rightsquigarrow_{h(R)} G'$. I.e., G' is the result of performing h(R) on G

Definition: Rewrite derivation

Let \mathcal{R} be graph transformation system and G and G' be two graphs.

A *rewrite derivation* from *G* to *G'*, noted $G \rightarrow_{\mathcal{R}} G'$, is a sequence $G \rightarrow_{\rho_0} G_1 \rightarrow_{\rho_1} \dots \rightarrow_{\rho_n} G'$ such that $\forall i.\rho_i \in \mathcal{R}$.

イロト イポト イヨト イヨト 二日

Strategies

• A strategy is a word of the following language defined by *s* ::=

- ρ (application of a rule)
- s; s (sequential composition of strategies)
- $s \oplus s$ (non-deterministic choice between two strategies)
- s* (iteration as long as possible of a strategy)
- ▶ ...

Strategies

• A strategy is a word of the following language defined by *s* ::=

- ρ (application of a rule)
- s; s (sequential composition of strategies)
- $s \oplus s$ (non-deterministic choice between two strategies)
- s* (iteration as long as possible of a strategy)
- ▶ ...
- Example: Strategy strat = s₀; s₁^{*}; s₂ performs once the sub-strategy s₀, iterates as much as possible sub-strategy s₁, before performing once sub-strategy s₂.

Strategies

• A strategy is a word of the following language defined by *s* ::=

- ρ (application of a rule)
- s; s (sequential composition of strategies)
- $s \oplus s$ (non-deterministic choice between two strategies)
- s* (iteration as long as possible of a strategy)
- ▶ ...
- Example: Strategy strat = s₀; s₁^{*}; s₂ performs once the sub-strategy s₀, iterates as much as possible sub-strategy s₁, before performing once sub-strategy s₂.
- A derivation $G \rightarrow_{\rho_0} G_1 \rightarrow_{\rho_1} \dots \rightarrow_{\rho_n} G'$ is controlled by a strategy *strat* iff the word $\rho_0 \rho_1 \dots \rho_n$ belongs to the language defined by strategy *strat*.

Outline

- Labeled Graphs or Models
- 2 Description Logics
- 3 Graph Transformation Systems
- A Hoare Logic

э

Specification and Correctness

Definition: Specification

A specification spec is a triple (*Pre, strat, Post*) where:

- Pre is a DL formula called the precondition
- strat is a strategy with respect to a graph transformation system $\ensuremath{\mathcal{R}}$
- Post is a DL formula called the postcondition.

Definition: Correctness

A specification *spec* = (*Pre*, *strat*, *Post*) is said to be *correct* iff:

- for all graphs G,
- for all graphs G' such that $G \rightarrow_{strat} G'$
- if $G \models Pre$ then $G' \models Post$

- Let ${\mathcal R}$ be a graph transformation system
- Let *strat* be a strategy and $\rho_0 \dots \rho_{n-1}\rho_n$ an element of *strat*
- Let Pre and Post be two DL formulas
- Aim: Prove that specification *spec* = (*Pre*, *strat*, *Post*) is correct

Pre

ρ₀;

•••

 $\rho_{n-1};$

ρ_n; Post

- Let ${\mathcal R}$ be a graph transformation system
- Let *strat* be a strategy and $\rho_0 \dots \rho_{n-1}\rho_n$ an element of *strat*
- Let Pre and Post be two DL formulas
- Aim: Prove that specification *spec* = (*Pre*, *strat*, *Post*) is correct

Pre

a0;

 $a_{m-1};$

a_m; Post

- Let ${\mathcal R}$ be a graph transformation system
- Let *strat* be a strategy and $\rho_0 \dots \rho_{n-1}\rho_n$ an element of *strat*
- Let Pre and Post be two DL formulas
- Aim: Prove that specification *spec* = (*Pre*, *strat*, *Post*) is correct

Pre

a₀;

a_{m-1}; Post[a_m] a_m; Post

- Let ${\mathcal R}$ be a graph transformation system
- Let *strat* be a strategy and $\rho_0 \dots \rho_{n-1}\rho_n$ an element of *strat*
- Let Pre and Post be two DL formulas
- Aim: Prove that specification *spec* = (*Pre*, *strat*, *Post*) is correct

```
Pre
a<sub>0</sub>;
```

```
...
Post[a<sub>m</sub>][a<sub>m-1</sub>]
```

```
a_{m-1};
```

```
Post[a<sub>m</sub>]
```

```
a<sub>m</sub>;
```

Post

- Let ${\mathcal R}$ be a graph transformation system
- Let *strat* be a strategy and $\rho_0 \dots \rho_{n-1}\rho_n$ an element of *strat*
- Let Pre and Post be two DL formulas
- Aim: Prove that specification *spec* = (*Pre*, *strat*, *Post*) is correct

```
Pre \Rightarrow Post[a_m][a_{m-1}]...[a_0]
```

```
a<sub>0</sub>;
```

```
...
Post[a<sub>m</sub>][a<sub>m-1</sub>]
a<sub>m-1</sub>;
Post[a<sub>m</sub>]
a<sub>m</sub>;
```

```
Post
```

Substitutions

Definition: Substitution

A *substitution*, written [*a*], is associated to each elementary action *a*, such that for all graphs *G* and DL formulas ϕ , $(G \models \phi[a]) \Leftrightarrow (G' \models \phi)$ where G' is obtained from *G* after application of action *a*,i.e., $G \rightsquigarrow_a G'$.

$$egin{array}{ccc} G & \leadsto_{a} & G' \ \phi[a] & \phi \end{array}$$

A (10) A (10)

We define wp(a, Q) the weakest precondition for an elementary action *a* and a formula *Q*.

•
$$wp(a, Q) = Q[a]$$

< 6 b

We define wp(a, Q) the weakest precondition for an elementary action *a* and a formula *Q*.

•
$$wp(a, Q) = Q[a]$$
 How to handle substitutions?

4 A N

Floyd-Hoare Logics: a classical example The assignment instruction (action)

Weakest precondition: $wp(Post, [x := X + 1]) \equiv x > 5[x := X + 1]$

Action: x := x + 1;

Post: *Post* $\equiv x > 5$

E 5 4 E

Floyd-Hoare Logics: a classical example The assignment instruction (action)

 $wp(Post, [x := X + 1]) \equiv x > 5[x := X + 1] \equiv x > 4$

Action: x := x + 1;

Post: *Post* $\equiv x > 5$

ICGT2018 (Toulouse)

3

4 3 5 4 3

4 A 1

Floyd-Hoare Logics: a basic case

 $wp(Post, Add_E(e, a, b, R)) \equiv \exists U.(a \land (> 5R.\top))[Add_E(e, a, b, R)]$

Action: Add_E(e, a, b, R);

Post: $\exists U.(a \land (> 5R.\top))$

э.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Floyd-Hoare Logics: a basic case

```
 \begin{array}{l} wp(Post, Add_{E}(e, a, b, R)) \equiv \exists U.(a \land (> 5R.\top))[Add_{E}(e, a, b, R)] \equiv \\ (\exists U.(a \land \exists R.b) => \exists U.(a \land (> 5R.\top))) \\ \land (\exists U.(a \land \forall R.\neg b) => \exists U.(a \land (> 4R.\top))) \end{array}
```

Action: $Add_E(e, a, b, R)$;

Post: ∃*U*.(*a* ∧ (> 5*R*.⊤))

3

不是 医不是 医下

< 🗇 🕨

Closure Under Substitutions

Definition: Closure Under Substitution

A logic \mathcal{L} is said to be *closed under substitution* iff for every formula $\phi \in \mathcal{L}$, every substitution [*a*], ϕ [*a*] $\in \mathcal{L}$.

DLs and Closure Under Substitutions

Theorem: The description logics ALCUO, ALCUOI, ALCQUOI, ALCUOSelf, ALCUOISelf, and ALCQUOISelf are closed under substitutions.

Theorem: The description logics ALCQUO and ALCQUOSelf are not closed under substitutions.

Generating Weakest Preconditions (continued)

We define wp(strat, Q) the weakest precondition for a strategy strat and a formula Q.

- $wp(s_0; s_1, Q) = wp(s_0, wp(s_1, Q))$
- $wp(s_0 \oplus s_1, Q) = wp(s_0, Q) \land wp(s_1, Q)$
- $wp(\rho, Q) = App(\rho) \Rightarrow Q[a_n]...[a_0]$ where ρ 's right-hand side is $a_0; ...; a_n$

< A >

We define wp(strat, Q) the weakest precondition for a strategy strat and a formula Q.

•
$$wp(\rho, Q) = App(\rho) \Rightarrow Q[a_n]...[a_0]$$

Definition: Application Condition

Given a rule ρ , the *application condition* $App(\rho)$ is a formula such that a graph $G \models App(\rho)$ iff there exists a match between the left-hand side of ρ and G

(B)

We define wp(strat, Q) the weakest precondition for a strategy strat and a formula Q.

• wp(a, Q) = Q[a]

• $wp(\epsilon, Q) = Q$

•
$$wp(a; \alpha, Q) = wp(a, wp(\alpha, Q))$$

- $wp(s_0; s_1, Q) = wp(s_0, wp(s_1, Q))$
- $wp(s_0 \oplus s_1, Q) = wp(s_0, Q) \land wp(s_1, Q)$
- $wp(\rho, Q) = App(\rho) \Rightarrow Q[a_n]...[a_0]$

3

不是 医不是 医下

< 🗇 🕨

wp(strat, Q) computes the weakest precondition for a strategy strat and a formula Q.

- wp(a, Q) = Q[a]
- $wp(\epsilon, Q) = Q$

•
$$wp(a; \alpha, Q) = wp(a, wp(\alpha, Q))$$

- $wp(s_0; s_1, Q) = wp(s_0, wp(s_1, Q))$
- $wp(s_0 \oplus s_1, Q) = wp(s_0, Q) \land wp(s_1, Q)$
- $wp(\rho, Q) = App(\rho) \Rightarrow Q[a_n]...[a_0]$

•
$$wp(s^*, Q) = inv_s$$

э.

4 E N 4 E N

< 🗇 🕨

Verification Conditions

- $vc(\rho, Q) = \top$
- $vc(s_0; s_1, Q) = vc(s_0, wp(s_1, Q)) \land vc(s_1, Q)$
- $vc(s_0 \oplus s_1, Q) = vc(s_0, Q) \wedge vc(s_1, Q)$

• $vc(s^*, Q) = (inv_s \land \neg App(s) \Rightarrow Q) \land (inv_s \land App(s) \Rightarrow wp(s, inv_s)) \land vc(s, inv_s)$

-

< 6 k

Soundness of the verification

Definition: Correctness formula Let spec = (Pre, strat, Post) be a specification. We call correctness formula the formula $correct(spec) = (Pre \Rightarrow wp(strat, Post)) \land vc(strat, Post).$

Theorem:

If *correct*(*spec*) is valid, then for all graphs *G*, *G*' such that $G \rightarrow_{strat} G'$, $G \models Pre$ implies $G' \models Post$.

< 回 > < 回 > < 回 > -

Decidability of the verification

Theorem:

Let spec = (Pre, strat, Post) be a specification using one of the following DL logics ALCUO, ALCUOI, ALCUOI, ALCUOSelf, ALCUOISelf, and ALCQUOISelf. Then, the correctness of *spec* is decidable.

4 3 5 4 3

 We identified several DL logics that can be used for the verification of graph/model transformation systems (those closed under substitutions)

4 3 > 4 3

4 A 1

- We identified several DL logics that can be used for the verification of graph/model transformation systems (those closed under substitutions)
- We identified DL logics which are not closed under substitutions and thus cannot be involved in the computation of weakest preconditions

- We identified several DL logics that can be used for the verification of graph/model transformation systems (those closed under substitutions)
- We identified DL logics which are not closed under substitutions and thus cannot be involved in the computation of weakest preconditions
- The considered graph transformation systems are featuring actions such as node cloning and merging, in addition to classical node and edge addition and deletion.

A B > A B >

- We identified several DL logics that can be used for the verification of graph/model transformation systems (those closed under substitutions)
- We identified DL logics which are not closed under substitutions and thus cannot be involved in the computation of weakest preconditions
- The considered graph transformation systems are featuring actions such as node cloning and merging, in addition to classical node and edge addition and deletion.
- The considered graphs/models are assumed to be labeled by by concepts and roles of the considered DL logics.

- We identified several DL logics that can be used for the verification of graph/model transformation systems (those closed under substitutions)
- We identified DL logics which are not closed under substitutions and thus cannot be involved in the computation of weakest preconditions
- The considered graph transformation systems are featuring actions such as node cloning and merging, in addition to classical node and edge addition and deletion.
- The considered graphs/models are assumed to be labeled by by concepts and roles of the considered DL logics.
- Future work:
 - An implementation with connections to SMT solvers
 - Allow the use of data as labels in addition to logical formulas
 - Devise other decidable logics