Verifying Graph Transformation Systems with Description Logics

Jon H. Brenas ${ }^{1}$, Rachid Echahed ${ }^{2}$ and Martin Strecker ${ }^{3}$
${ }^{1}$ UTHSC - ORNL, University of Memphis, Tennessee, USA
${ }^{2}$ CNRS and Université Grenoble Alpes, Grenoble, France
${ }^{3}$ Université de Toulouse, IRIT, Toulouse, France

June 25th, 2018

Partial Correctness à la Hoare of Graph and Model Transformation Systems

To be proven: $\{\operatorname{Pre}($ input $)\}$ Program $\{\operatorname{Post}($ output $)\}$

- Program is a graph or model transformation system
- input and output are graphs or models
- Pre and Post are description logic (DL) formulas over the inputs and the outputs

Outline

(1) Labeled Graphs or Models

(2) Description Logics
(3) Graph Transformation Systems

4 A Hoare Logic

Models/Graphs

- Different kinds of nodes and edges

Logically Decorated Graphs

Let \mathcal{L} be a set of formulas, a logically decorated graph G is a tuple ($N, E, \lambda_{N}, \lambda_{E}, s, t$) where:

- N is a set of nodes,
- E is a set of edges,
- $\lambda_{N}: N \rightarrow 2^{\mathcal{L}}$ is a node labeling function,
- $\lambda_{E}: E \rightarrow \mathcal{L}$ is an edge labeling function
- source and target functions: s: $E \rightarrow N$ and $t: E \rightarrow N$

In this talk, the set \mathcal{L} consists of description logic formulas.

Outline

(1) Labeled Graphs or Models

2 Description Logics

(3) Graph Transformation Systems

4 A Hoare Logic

Why considering Description Logics (DLs)?

- DLs constitute a formal basis of knowledge representation languages.
- DLs provide logical basis for ontologies.
(E.g., the web ontology language OWL is based on DLs)
- Reasoning problems for DLs are decidable (in general)

DL Syntax

a DL syntax allows one to define:

- Concept names, which are equivalent to classical first-order logic unary predicates,
- Role names, which are equivalent to binary predicates and
- Individuals, which are equivalent to classical constants.

There are various DLs in the literature, they mainly differ by the logical operators they offer to construct concept and role expressions or axioms.

DL syntax: Concepts and roles

Let \mathcal{C}_{0} (resp. \mathcal{R}_{0} and \mathcal{O}) be a set of atomic concepts (resp. atomic roles and nominals).
Let $c_{0} \in \mathcal{C}_{0}, r_{0} \in \mathcal{R}_{0}, o \in \mathcal{O}$, and n an integer.

The set of concepts C and roles R are defined by:
$C:=\top\left|c_{0}\right| \exists R . C|\neg C| C \vee C$
| O (nominals, \mathcal{O})
$\mid \exists R$.Self (self loops, Self)
$\mid(<n R C)$ (counting quantifiers, \mathcal{Q})
$R:=r_{0}$
| U (universal role, \mathcal{U})
$\mid R^{-}$(inverse role, $\left.\mathcal{I}\right)$

Examples of DL logics: $\mathcal{A L C}, \mathcal{A L C U O}, \mathcal{A L C U I}, \ldots$

Examples of properties

Examples of some requirements about the organization of a hospital:

- All patients of a pediatrician are children:

First-order formula:
$\forall x, y$. Pediatrician $(x) \wedge$ Has_patient $(x, y) \Rightarrow$ Child (y)
DL formula (ALCU): \forall U.Pediatrician $\Rightarrow \forall$ Has_patient.Child

Examples of properties

Examples of some requirements about the organization of a hospital:

- All patients of a pediatrician are children:

First-order formula:
$\forall x, y$. Pediatrician $(x) \wedge$ Has_patient $(x, y) \Rightarrow$ Child (y)
DL formula (ALCU): $\forall U$.Pediatrician $\Rightarrow \forall$ Has_patient.Child

- Dr. Smith is a pediatrician:

First-order formula: $\exists x$.Dr.Smith $=x \wedge \operatorname{Pediatrician~}(x)$
DL formula (ALCUO): \exists U.Dr.Smith \wedge Pediatrician

Examples of properties

Examples of some requirements about the organization of a hospital:

- All patients of a pediatrician are children:

First-order formula:
$\forall x, y$. Pediatrician $(x) \wedge$ Has_patient $(x, y) \Rightarrow \operatorname{Child}(y)$
DL formula ($\mathcal{A L C U}$): $\forall U$.Pediatrician $\Rightarrow \forall$ Has_patient.Child

- Dr. Smith is a pediatrician:

First-order formula: $\exists x$.Dr.Smith $=x \wedge$ Pediatrician (x)
DL formula (ALCHO): \exists U.Dr.Smith \wedge Pediatrician

- All patients are a doctor's patients:

First-order formula:
$\forall x, y$. Patient $(x) \Rightarrow$ Has_patient $(y, x) \wedge \operatorname{Doctor}(y)$
DL formula ($\mathcal{A L C L I I) : ~} \forall U$ U.Patient $\Rightarrow \exists$ Has_patient ${ }^{-}$.Doctor

Examples of properties (Continued)

Examples of some requirements about the organization of a hospital:
(1) An operation can only be associated with one operating room: First-order formula:
$\forall x, y, z$. Operation $(x) \wedge$ Scheduled_in $(x, y) \wedge$ Scheduled_in $(x, z) \wedge$ Operation_room $(y) \wedge$ Operation_room $(z) \Rightarrow y=z$ DL formula ($\mathcal{A L C L}$) :
$\forall U$.Operation \Rightarrow (<2 Scheduled_in.Operation_room)

Examples of properties (Continued)

Examples of some requirements about the organization of a hospital:
(1) An operation can only be associated with one operating room:

First-order formula:
$\forall x, y, z$. Operation $(x) \wedge$ Scheduled_in $(x, y) \wedge$ Scheduled_in $(x, z) \wedge$
Operation_room $(y) \wedge$ Operation_room $(z) \Rightarrow y=z$
DL formula ($\mathcal{A L C L}$) :
$\forall U$.Operation \Rightarrow (<2 Scheduled_in.Operation_room)
(2) A doctor can not be his/her own patient:

First-order formula: $\forall x$.Doctor $(x) \Rightarrow \neg$ Has_patient (x, x)
DL formula (ALCUQ): $\forall U$.Doctor $\Rightarrow \neg \exists$ Has_patient.SELF

Outline

(1) Labeled Graphs or Models

(2) Description Logics
(3) Graph Transformation Systems
(4) A Hoare Logic

Graph Transformation

- There are several ways to transform graphs:
- Imperative Programs
- Rule-Based Programs
- Knowledge-Base updates
- Non-classical Logics

Graph Transformation

- There are several ways to transform graphs:
- Imperative Programs
- Rule-Based Programs
* Algebraic/Categorial approaches (DPO, SPO, SqPO, AGREE)
* Algorithmic approaches
- Knowledge-Base updates
- Non-classical Logics

Graph Transformation: Considered Rules

The considered Graph Rewriting rules are of the form $L \rightarrow R$ where:

- L is a graph
- R is a sequence of elementary actions

Some Elementary Actions

Let \mathcal{C}_{0} (resp. \mathcal{R}_{0}) be a set of node (resp. edge) labels. An elementary action, say a, may be of the following forms:

- a node addition $\operatorname{add}_{N}(i)$ (resp. node deletion del ${ }_{N}(i)$)

Some Elementary Actions

Let \mathcal{C}_{0} (resp. \mathcal{R}_{0}) be a set of node (resp. edge) labels. An elementary action, say a, may be of the following forms:

- a node addition $\operatorname{add}_{N}(i)$ (resp. node deletion del ${ }_{N}(i)$)
- a node label addition $\operatorname{add}_{C}(i, c)$ (resp. node label deletion $\left.\operatorname{del}_{C}(i, c)\right)$ where i is a node and c is a label in \mathcal{C}_{0}.

Some Elementary Actions

Let \mathcal{C}_{0} (resp. \mathcal{R}_{0}) be a set of node (resp. edge) labels. An elementary action, say a, may be of the following forms:

- a node addition $\operatorname{add}_{N}(i)$ (resp. node deletion del ${ }_{N}(i)$)
- a node label addition $\operatorname{add}_{C}(i, c)$ (resp. node label deletion $\left.\operatorname{del}_{C}(i, c)\right)$ where i is a node and c is a label in \mathcal{C}_{0}.
- an edge addition $\operatorname{add}_{E}(e, i, j, r)$ (resp. edge deletion $\left.\operatorname{del}_{E}(e, i, j, r)\right)$ where e is an edge, i and j are nodes and r is an edge label in \mathcal{R}_{0}.

Some Elementary Actions

Let \mathcal{C}_{0} (resp. \mathcal{R}_{0}) be a set of node (resp. edge) labels. An elementary action, say a, may be of the following forms:

- a node addition $\operatorname{add}_{N}(i)$ (resp. node deletion del ${ }_{N}(i)$)
- a node label addition $\operatorname{add}_{C}(i, c)$ (resp. node label deletion $\operatorname{del}_{C}(i, c)$) where i is a node and c is a label in \mathcal{C}_{0}.
- an edge addition $\operatorname{add}_{E}(e, i, j, r)$ (resp. edge deletion $\left.\operatorname{del}_{E}(e, i, j, r)\right)$ where e is an edge, i and j are nodes and r is an edge label in \mathcal{R}_{0}.
- a global edge redirection $i \gg j$ where i and j are nodes. It redirects all incoming edges of i towards j.

Some Elementary Actions

Let \mathcal{C}_{0} (resp. \mathcal{R}_{0}) be a set of node (resp. edge) labels. An elementary action, say a, may be of the following forms:

- a node addition $\operatorname{add}_{N}(i)$ (resp. node deletion del ${ }_{N}(i)$)
- a node label addition $\operatorname{add}_{C}(i, c)$ (resp. node label deletion $\left.\operatorname{del}_{C}(i, c)\right)$ where i is a node and c is a label in \mathcal{C}_{0}.
- an edge addition $\operatorname{add}_{E}(e, i, j, r)$ (resp. edge deletion $\left.\operatorname{del}_{E}(e, i, j, r)\right)$ where e is an edge, i and j are nodes and r is an edge label in \mathcal{R}_{0}.
- a global edge redirection $i \gg j$ where i and j are nodes. It redirects all incoming edges of i towards j.
- a merge action $m r g(i, j)$ where i and j are nodes.

Some Elementary Actions

Let \mathcal{C}_{0} (resp. \mathcal{R}_{0}) be a set of node (resp. edge) labels. An elementary action, say a, may be of the following forms:

- a node addition add $_{N}(i)\left(r e s p\right.$. node deletion del $\left.l_{N}(i)\right)$
- a node label addition $\operatorname{add}_{C}(i, c)$ (resp. node label deletion $\operatorname{del}_{C}(i, c)$) where i is a node and c is a label in \mathcal{C}_{0}.
- an edge addition $\operatorname{add}_{E}(e, i, j, r)$ (resp. edge deletion $\left.\operatorname{del}_{E}(e, i, j, r)\right)$ where e is an edge, i and j are nodes and r is an edge label in \mathcal{R}_{0}.
- a global edge redirection $i \gg j$ where i and j are nodes. It redirects all incoming edges of i towards j.
- a merge action mrg (i, j) where i and j are nodes.
- a clone action $c_{l}\left(i, j, L_{\text {in }}, L_{\text {out }}, L_{l_{\text {Iin }},}, L_{\text {I_out }}, L_{l_{\text {IIoop }}}\right)$ where i and j are nodes and $L_{\text {in }}, L_{\text {out }}, L_{l_{-i},}, L_{l_{\text {_out }}}$ and $L_{l_{- \text {Ioop }}}$ are subsets of \mathcal{R}_{0}. It clones a node i by creating a new node j and connects j to the rest of a host graph according to different information given in the parameters $L_{\text {in }}, L_{\text {out }}, L_{I_{\text {I in }},}, L_{l_{-} \text {out }}, L_{l_{I \text { Ioop }}}$.

Graph Rewrite Systems: Example

$\rho_{0}:$

$\operatorname{del}_{N}(I)$

Match

- To be able to apply rules, we need to define when they can be applied.

Match

Definition: Match
A match h between a lhs L and a graph G is a pair of functions $h=\left(h^{N}, h^{E}\right)$, with $h^{N}: N^{L} \rightarrow N^{G}$ and $h^{E}: E^{L} \rightarrow E^{G}$ such that:
(1) $\forall e \in E^{L}, s^{G}\left(h^{E}(e)\right)=h^{N}\left(s^{L}(e)\right)$
(2) $\forall e \in E^{L}, t^{G}\left(h^{E}(e)\right)=h^{N}\left(t^{L}(e)\right)$
(3) $\forall n \in N^{L}, \forall c \in \lambda_{N}^{L}(n), h^{N}(n) \models c$
(4) $\forall e \in E^{L}, \lambda_{E}^{G}\left(h^{E}(e)\right)=\lambda_{E}^{L}(e)$

Remark: The third condition says that for every node, n, of the lhs, the node to which it is associated, $h(n)$, in G has to satisfy every concept in $\lambda_{N}^{L}(n)$. This condition clearly expresses additional negative and positive conditions which are added to the "structural" pattern matching.

Rewrite Step and Rewrite Derivation

Definition: Rewrite step
Let $\rho=L \rightarrow R$ be a rule and G and G^{\prime} be two graphs.
G rewrites into G^{\prime} using rule ρ, noted $G \rightarrow_{\rho} G^{\prime}$ iff:

- There exists a match h from the left-hand side L to G, and
- $G \rightsquigarrow h(R) G^{\prime}$. I.e., G^{\prime} is the result of performing $h(R)$ on G

Definition: Rewrite derivation

Let \mathcal{R} be graph transformation system and G and G^{\prime} be two graphs.
A rewrite derivation from G to G^{\prime}, noted $G \rightarrow_{\mathcal{R}} G^{\prime}$, is a sequence
$G \rightarrow_{\rho_{0}} G_{1} \rightarrow_{\rho_{1}} \ldots \rightarrow_{\rho_{n}} G^{\prime}$ such that $\forall i . \rho_{i} \in \mathcal{R}$.

Strategies

- A strategy is a word of the following language defined by $s::=$
- ρ (application of a rule)
- $s ; s$ (sequential composition of strategies)
- $s \oplus s$ (non-deterministic choice between two strategies)
- s^{*} (iteration as long as possible of a strategy)

Strategies

- A strategy is a word of the following language defined by $s::=$
- ρ (application of a rule)
- $s ; s$ (sequential composition of strategies)
- $s \oplus s$ (non-deterministic choice between two strategies)
- s^{*} (iteration as long as possible of a strategy)
- Example: Strategy strat $=s_{0} ; s_{1}^{*} ; s_{2}$ performs once the sub-strategy s_{0}, iterates as much as possible sub-strategy s_{1}, before performing once sub-strategy s_{2}.

Strategies

- A strategy is a word of the following language defined by $s::=$
- ρ (application of a rule)
- $s ; s$ (sequential composition of strategies)
- $s \oplus s$ (non-deterministic choice between two strategies)
- s^{*} (iteration as long as possible of a strategy)
- Example: Strategy strat $=s_{0} ; s_{1}^{*} ; s_{2}$ performs once the sub-strategy s_{0}, iterates as much as possible sub-strategy s_{1}, before performing once sub-strategy s_{2}.
- A derivation $G \rightarrow_{\rho_{0}} G_{1} \rightarrow_{\rho_{1}} \ldots \rightarrow_{\rho_{n}} G^{\prime}$ is controlled by a strategy strat iff the word $\rho_{0} \rho_{1} \ldots \rho_{n}$ belongs to the language defined by strategy strat.

Outline

(1) Labeled Graphs or Models

(2) Description Logics
(3) Graph Transformation Systems
(4) A Hoare Logic

Specification and Correctness

Definition: Specification
A specification spec is a triple (Pre, strat, Post) where:

- Pre is a DL formula called the precondition
- strat is a strategy with respect to a graph transformation system \mathcal{R}
- Post is a DL formula called the postcondition.

Definition: Correctness

A specification spec $=($ Pre, strat, Post $)$ is said to be correct iff:

- for all graphs G,
- for all graphs G^{\prime} such that $G \rightarrow_{\text {strat }} G^{\prime}$
- if $G \models$ Pre then $G^{\prime} \models$ Post

Floyd-Hoare Logics

- Let \mathcal{R} be a graph transformation system
- Let strat be a strategy and $\rho_{0} \ldots \rho_{n-1} \rho_{n}$ an element of strat
- Let Pre and Post be two DL formulas
- Aim: Prove that specification spec $=($ Pre, strat, Post $)$ is correct Pre
ρ_{0};
...
ρ_{n-1};
$\rho_{n} ;$
Post

Floyd-Hoare Logics

- Let \mathcal{R} be a graph transformation system
- Let strat be a strategy and $\rho_{0} \ldots \rho_{n-1} \rho_{n}$ an element of strat
- Let Pre and Post be two DL formulas
- Aim: Prove that specification spec $=($ Pre, strat, Post $)$ is correct Pre
a_{0};
$a_{m-1} ;$
a_{m};
Post

Floyd-Hoare Logics

- Let \mathcal{R} be a graph transformation system
- Let strat be a strategy and $\rho_{0} \ldots \rho_{n-1} \rho_{n}$ an element of strat
- Let Pre and Post be two DL formulas
- Aim: Prove that specification spec $=($ Pre, strat, Post $)$ is correct

```
Pre
a0;
am-1;
Post[am]
am;
Post
```


Floyd-Hoare Logics

- Let \mathcal{R} be a graph transformation system
- Let strat be a strategy and $\rho_{0} \ldots \rho_{n-1} \rho_{n}$ an element of strat
- Let Pre and Post be two DL formulas
- Aim: Prove that specification spec $=($ Pre, strat, Post $)$ is correct

```
Pre
a0;
Post[am][am-1]
am-1;
Post[am]
am;
Post
```


Floyd-Hoare Logics

- Let \mathcal{R} be a graph transformation system
- Let strat be a strategy and $\rho_{0} \ldots \rho_{n-1} \rho_{n}$ an element of strat
- Let Pre and Post be two DL formulas
- Aim: Prove that specification spec $=($ Pre, strat, Post $)$ is correct
$\operatorname{Pre} \Rightarrow \operatorname{Post}\left[a_{m}\right]\left[a_{m-1}\right] \ldots\left[a_{0}\right]$
a_{0};
$\operatorname{Post}\left[a_{m}\right]\left[a_{m-1}\right]$
a_{m-1};
$\operatorname{Post}\left[a_{m}\right]$
a_{m};
Post

Substitutions

Definition: Substitution

A substitution, written [a], is associated to each elementary action
a, such that for all graphs G and $D L$ formulas ϕ,
$(G \models \phi[a]) \Leftrightarrow\left(G^{\prime} \models \phi\right)$ where G^{\prime} is obtained from G after application of action a,i.e., $G \not \rightsquigarrow_{a} G^{\prime}$.

G	$\rightsquigarrow a$	G^{\prime}
$\phi[a]$		ϕ

Generating Weakest Preconditions

We define $w p(a, Q)$ the weakest precondition for an elementary action a and a formula Q.

- $w p(a, Q)=Q[a]$

Generating Weakest Preconditions

We define $w p(a, Q)$ the weakest precondition for an elementary action a and a formula Q.

- $w p(a, Q)=Q[a]$

How to handle substitutions?

Floyd-Hoare Logics: a classical example The assignment instruction (action)

Weakest precondition: $w p($ Post,$[x:=X+1]) \equiv x>5[x:=X+1]$

Action: $x:=x+1$;

Post: Post $\equiv x>5$

Floyd-Hoare Logics: a classical example The assignment instruction (action)

$w p(\operatorname{Post},[x:=X+1]) \equiv x>5[x:=X+1] \equiv x>4$

Action: $x:=x+1$;

Post: Post $\equiv x>5$

Floyd-Hoare Logics: a basic case

$w p\left(\operatorname{Post}, \operatorname{Add}_{E}(e, a, b, R)\right) \equiv \exists U .(a \wedge(>5 R . \top))\left[\operatorname{Add}_{E}(e, a, b, R)\right]$

Action: $\operatorname{Add}_{E}(e, a, b, R)$;

Post: $\exists U .(a \wedge(>5 R . \top))$

Floyd-Hoare Logics: a basic case

$w p\left(\operatorname{Post}, \operatorname{Add}_{E}(e, a, b, R)\right) \equiv \exists U .(a \wedge(>5 R$. $T))\left[\operatorname{Add}_{E}(e, a, b, R)\right] \equiv$ $(\exists U .(a \wedge \exists R . b)=>\exists U .(a \wedge(>5 R . T)))$
$\wedge(\exists U .(a \wedge \forall R . \neg b)=>\exists U .(a \wedge(>4 R . T)))$

Action: $\operatorname{Add}_{E}(e, a, b, R)$;

Post: $\exists U .(a \wedge(>5 R . T))$

Closure Under Substitutions

Definition: Closure Under Substitution
A logic \mathcal{L} is said to be closed under substitution iff for every formula $\phi \in \mathcal{L}$, every substitution [a], $\phi[a] \in \mathcal{L}$.

DLs and Closure Under Substitutions

Theorem: The description logics
$\mathcal{A L C U O}, \mathcal{A L C U O I}, \mathcal{A L C Q U O I}, \mathcal{A L C U O S e l f}, \mathcal{A L C U O I S}$ elf, and $\mathcal{A L C Q U O I S}$ elf are closed under substitutions.

Theorem: The description logics $\mathcal{A L C Q U O}$ and $\mathcal{A L C Q U O S}$ elf are not closed under substitutions.

Generating Weakest Preconditions (continued)

We define $w p(s t r a t, Q)$ the weakest precondition for a strategy strat and a formula Q.

- $w p\left(s_{0} ; s_{1}, Q\right)=w p\left(s_{0}, w p\left(s_{1}, Q\right)\right)$
- $w p\left(s_{0} \oplus s_{1}, Q\right)=w p\left(s_{0}, Q\right) \wedge w p\left(s_{1}, Q\right)$
- $w p(\rho, Q)=A p p(\rho) \Rightarrow Q\left[a_{n}\right] \ldots\left[a_{0}\right]$ where ρ 's right-hand side is $a_{0} ; \ldots ; a_{n}$

Generating Weakest Preconditions

We define $w p(s t r a t, Q)$ the weakest precondition for a strategy strat and a formula Q.

- $w p(\rho, Q)=\operatorname{App}(\rho) \Rightarrow Q\left[a_{n}\right] \ldots\left[a_{0}\right]$

Definition: Application Condition
Given a rule ρ, the application condition $\operatorname{App}(\rho)$ is a formula such that a graph $G \models A p p(\rho)$ iff there exists a match between the left-hand side of ρ and G

Generating Weakest Preconditions

We define $w p(s t r a t, Q)$ the weakest precondition for a strategy strat and a formula Q.

- $w p(a, Q)=Q[a]$
- $w p(\epsilon, Q)=Q$
- $w p(a ; \alpha, Q)=w p(a, w p(\alpha, Q))$
- $w p\left(s_{0} ; s_{1}, Q\right)=w p\left(s_{0}, w p\left(s_{1}, Q\right)\right)$
- $w p\left(s_{0} \oplus s_{1}, Q\right)=w p\left(s_{0}, Q\right) \wedge w p\left(s_{1}, Q\right)$
- $w p(\rho, Q)=\operatorname{App}(\rho) \Rightarrow Q\left[a_{n}\right] \ldots\left[a_{0}\right]$

Generating Weakest Preconditions

$w p(s t r a t, Q)$ computes the weakest precondition for a strategy strat and a formula Q.

- $w p(a, Q)=Q[a]$
- $w p(\epsilon, Q)=Q$
- $w p(a ; \alpha, Q)=w p(a, w p(\alpha, Q))$
- $w p\left(s_{0} ; s_{1}, Q\right)=w p\left(s_{0}, w p\left(s_{1}, Q\right)\right)$
- $w p\left(s_{0} \oplus s_{1}, Q\right)=w p\left(s_{0}, Q\right) \wedge w p\left(s_{1}, Q\right)$
- $w p(\rho, Q)=\operatorname{App}(\rho) \Rightarrow Q\left[a_{n}\right] \ldots\left[a_{0}\right]$
- $w p\left(s^{*}, Q\right)=i n v_{s}$

Verification Conditions

- $v c(\rho, Q)=\top$
- $v c\left(s_{0} ; s_{1}, Q\right)=v c\left(s_{0}, w p\left(s_{1}, Q\right)\right) \wedge v c\left(s_{1}, Q\right)$
- $v c\left(s_{0} \oplus s_{1}, Q\right)=v c\left(s_{0}, Q\right) \wedge v c\left(s_{1}, Q\right)$
- $v c\left(s^{*}, Q\right)=$
$\left(i n v_{s} \wedge \neg A p p(s) \Rightarrow Q\right) \wedge\left(i n v_{s} \wedge A p p(s) \Rightarrow w p\left(s, i n v_{s}\right)\right) \wedge v c\left(s, \operatorname{inv} v_{s}\right)$

Soundness of the verification

Definition: Correctness formula
Let spec $=($ Pre, strat, Post) be a specification. We call correctness formula the formula $\operatorname{correct}($ spec $)=($ Pre $\Rightarrow w p($ strat, Post $)) \wedge v c($ strat, Post $)$.

Theorem:

If correct(spec) is valid, then for all graphs G, G^{\prime} such that
$G \rightarrow_{\text {strat }} G^{\prime}, G \models$ Pre implies $G^{\prime} \models$ Post.

Decidability of the verification

```
Theorem:
Let spec \(=(\) Pre, strat, Post \()\) be a specification using one of the following DL logics \(\mathcal{A L C U O}, \mathcal{A L C U O I}, \mathcal{A L C Q U O I}, \mathcal{A L C U O S}\) elf, \(\mathcal{A L C U O I S e l f}\), and \(\mathcal{A L C Q U O I S e l f . ~ T h e n , ~ t h e ~ c o r r e c t n e s s ~ o f ~ s p e c ~}\) is decidable.
```


Conclusion

- We identified several DL logics that can be used for the verification of graph/model transformation systems (those closed under substitutions)

Conclusion

- We identified several DL logics that can be used for the verification of graph/model transformation systems (those closed under substitutions)
- We identified DL logics which are not closed under substitutions and thus cannot be involved in the computation of weakest preconditions

Conclusion

- We identified several DL logics that can be used for the verification of graph/model transformation systems (those closed under substitutions)
- We identified DL logics which are not closed under substitutions and thus cannot be involved in the computation of weakest preconditions
- The considered graph transformation systems are featuring actions such as node cloning and merging, in addition to classical node and edge addition and deletion.

Conclusion

- We identified several DL logics that can be used for the verification of graph/model transformation systems (those closed under substitutions)
- We identified DL logics which are not closed under substitutions and thus cannot be involved in the computation of weakest preconditions
- The considered graph transformation systems are featuring actions such as node cloning and merging, in addition to classical node and edge addition and deletion.
- The considered graphs/models are assumed to be labeled by by concepts and roles of the considered DL logics.

Conclusion

- We identified several DL logics that can be used for the verification of graph/model transformation systems (those closed under substitutions)
- We identified DL logics which are not closed under substitutions and thus cannot be involved in the computation of weakest preconditions
- The considered graph transformation systems are featuring actions such as node cloning and merging, in addition to classical node and edge addition and deletion.
- The considered graphs/models are assumed to be labeled by by concepts and roles of the considered DL logics.
- Future work:
- An implementation with connections to SMT solvers
- Allow the use of data as labels in addition to logical formulas
- Devise other decidable logics

