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Introduction to GP 2



Graph Programming Language GP 2

Compiler
to C

GP 2 program

Input graph Output graph

• Experimental language for graphs.
• Rule-based visual manipulation of graphs.
• Computationally complete.
• Non-deterministic.
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An Example: Transitive Closure

A graph is transitive if for every directed path v1 ⇝ v2 where v1 ̸= v2
there is an edge v1 → v2.

Main := link!

link(a,b,c,d,e:list)

a
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c
2

e
3

b d a
1

c
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e
3

b d

where not edge(1, 3)
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An Example: Transitive Closure

∗
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P-GP 2:
A Probabilistic Extension of GP 2



Non-determinism in GP 2

• Calling rule-set R on graph G is non-deterministic in GP 2:

G ⇒R Hi ∈ {H | G ⇒ri,g H and ri ∈ R}

• We extend GP 2’s syntax to allow a programmer to specify a
probability distribution over these outcomes.

• This allows a programmer to specify randomized algorithms, a
powerful concept used in broader computer science (see [1]).
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Syntax for Rule Calls

A rule-set is executed probabilistically by calling it within square brackets:

[r1, r2 . . . rn]

A rule-set called using conventional curly brackets is executed
‘non-deterministically’ as in GP 2:

{r1, r2 . . . rn}

Our extension P-GP 2 is conservative; all existing GP 2 programs are valid
and will be executed as before.
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Specifying Probabilities I

A rule-set R called on host graph G is executed by:

1. Probabilistically pick a rule ri ∈ R according to a weighted
distribution.

2. Probabilistically pick a match g for rule ri according to a uniform
distribution.

3. Execute (ri, g) on G:
G ⇒ri,g H
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Specifying Probabilities II

We choose a rule first, using a weighted distribution, from the set of rules
with valid matches; RG.Each rule ri has an associated real-valued positive
weight given by w(ri) - specified in square brackets after the rule
declaration:

grow_loop(n:int) [3.0]

n
1

n
1

1 2

Then the probability of choosing ri from RG is

w(ri)∑
rx∈RG

w(rx)
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Specifying Probabilities III

Once rule ri has been chosen, we choose a match for ri with uniform
probability from the set of valid matches Gri . Some match g is chosen
with probability

1
|Gri |

Yielding an overall definition of the probability distribution PGR over the
set of all possible rule-match pairs GR:

PGR(ri, g) = w(ri)∑
rx∈RG

w(rx)
× 1

|Gri |
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Related Work

Other approaches look at modeling e.g. Probabilistic GTS (discrete) [2]
and Stochastic GTS (continuous) [3]. These are single graph
transformation systems with probability distributions over outcomes.

We look at programming; sequential graph transformation systems that
algorithmically transform a graph.
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Applications I:
Karger’s Algorithm



Karger’s Algorithm & Minimum Cuts

• Karger’s algorithm [4] is a probabilistic algorithm for computing the
minimum cut of a graph with a known lower bound probability of
success.

• The minimum cut of a graph is a minimal set of edges to remove
from a graph to produce two disconnected sub-graphs.

• General idea is to repeatedly contract (merge) adjacent nodes until
only 2 nodes remain.
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Karger’s Algorithm

1 2 3

4 5 6 7 8 9 10 11

12 13 14
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1 2 3

4 5 6 7 8 9 10 11

12 13 14
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Karger’s Algorithm

1 2 3,9

4 5 6 7 8 10,14

12 13
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Karger’s Algorithm

1 2 3,9

4 5 6 7 8 10,14

12 13
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Karger’s Algorithm

2 3,9

5 1,7 8 10,14

4,12 13
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Karger’s Algorithm

2 3,9

5 1,7 8 10,14

4,12 13
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Karger’s Algorithm

2 3,9,10,14

5 1,7

4,12

13
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Karger’s Algorithm

2

13
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Karger’s Guarantee

Consider a global minimum cut of c edges of graph G with n nodes and e
edges:

• The minimum degree of G must be at least c, and therefore e ≥ n.c
2 .

• The probability of contracting some edge in the minimum cut is
therefore c

e ≤ c
n.c
2

= 2
n

• The probability of producing the minimum cut (by never contracting
some edge in the minimum cut) is bounded by:

pn ≥
n∏

i=3
1 − 2

i = 2
n(n − 1)
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Karger’s Algorithm in P-GP 2

Main := (three_node; [pick_pair]; delete_edge!; redirect!; cleanup)!

three_node(a,b,c:list)

a
1

b
2

c
3

a
1

b
2

c
3

delete_edge(a,b:list; n:int)

a
1

b
2

n a
1

b
2

cleanup(a,b:list)

a
1

b
2

a
1

pick_pair(a,b:list; n:int)

a
1

b
2

n a
1

b
2

redirect(a,b,c:list; n:int)

a
1

b
2

c
3

n
a

1

b
2

c
3

n
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Karger: An Example

1 2 3

4 5 6 7 8 9 10 11

12 13 14

2

13
∗

pn ≥ 2
8.(8 − 1) = 1

28
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Applications II:
G(n, p) Model for Random Graphs



The G(n, p) Model

The G(n, p) [5] model randomly generates graphs (V, E, s, t) such that:

• |V| = n.
• For each pair in V × V, an edge exists with probability p.
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Sampling the G(n, p) model in P-GP 2

Main := (pick_edge; [keep_edge, delete_edge])!; unmark_edge!

pick_edge(a,b,c:list)

a
1

c
2

b a
1

c
2

b

unmark_edge(a,b,c:list)

a
1

c
2

b a
1

c
2

b

keep_edge(a,b,c:list) [p]

a
1

c
2

b a
1

c
2

b

delete_edge(a,b,c:list) [1.0 - p]

a
1

c
2

b a
1

c
2

Expects, as input, a fully connected graph with n nodes.
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G(n, p): an Example

• A graph with M edges occurs with probability

pM(1 − p)(
n
2)−M

• G(n, 0.4), with probability 0.0207:

1 2

3 4

1 2

3 4

∗
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Applications III:
Evolving Graphs by Graph
Programming



Why Evolve Graphs?

Graphs are ubiquitous:
(Neural/Bayesian) Networks, (Quantum) Circuits, Syntax Trees etc.

Evolutionary Algorithms iteratively explore poorly understood domains.

P-GP 2 mutations
(hopefully) introduce

innovation

Surviving Graphs
repopulate

Fitness function
selects and removes

least fit Graphs

In this work we focus on digital circuit benchmarks.
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EGGP

An Evolutionary Algorithm for learning graphs:

i2 i1

NOR OR OR

NOR OR AND AND

AND OR NOR

o2 o1

o2 = (i2 ↓ i1) ∨ (i2 ∨ i1)
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Edge Mutations in P-GP 2

Main := try ([pick_edge]; mark_output!; [mutate_edge]; unmark!)

pick_edge(a,b,c:list)

a
1

c
2

b a
1

c
2

b

mark_output(a,b,c:list)

a
1

c
2

b a
1

c
2

b

unmark(a:list)

a
1

a
1

mutate_edge(a,b,c,d:list; s:string)

a
1

c
2

d:s
3

b

a
1

c
2

d:s
3

b

where s != "OUT"
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Edge Mutations

i2 i1

NOR OR OR

NOR OR AND AND

AND OR NOR

o2 o1
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Edge Mutations: [pick_edge]

i2 i1

NOR OR OR

NOR OR AND AND

AND OR NOR

o2 o1
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Edge Mutations: mark_output!

i2 i1

NOR OR OR

NOR OR AND AND

AND OR NOR

o2 o1
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Edge Mutations: [mutate_edge]

i2 i1

NOR OR OR

NOR OR AND AND

AND OR NOR

o2 o1
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Edge Mutations: unmark!

i2 i1

NOR OR OR

NOR OR AND AND

AND OR NOR

o2 o1
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EGGP vs. CGP

CGP is a standard algorithm for evolving directed acyclic graphs, and was
originally designed for evolving circuits [6].

EGGP CGP
Problem Median Evaluations Median Evaluations p A

5-Bit Odd Parity 38,790 96,372 10−18 0.86
6-Bit Odd Parity 68,032 502,335 10−31 0.97
7-Bit Odd Parity 158,852 1,722,377 10−33 0.99
8-Bit Odd Parity 315,810 7,617,310 10−34 0.99

Results from Digital Circuit benchmarks for CGP and EGGP. The p value
is from the two-tailed Mann-Whitney U test. Where p < 0.05, the effect
size from the Vargha-Delaney A test is shown; large effect sizes
(A > 0.71) are shown in bold.
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Conclusion



Conclusion

Contributions:

• Extended GP 2 to allow probabilistic rule-call execution.
• Implemented 3 distinct & previously impossible probabilistic graph

programs using P-GP 2.

Future Work:

• What other randomized algorithms can we now implement?
• What other randomized algorithms can’t we implement?
• Investigate efficiency of matching strategies e.g. incremental pattern

matching.
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Thank you!

P-GP 2:
https://github.com/UoYCS-plasma/P-GP2
EGGP:
https://github.com/UoYCS-plasma/EGGP
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