Probabilistic Graph Programming for
Randomized and Evolutionary Algorithms

Timothy Atkinson Detlef Plump Susan Stepney

University of York

Introduction to GP 2

Graph Programming Language GP 2

GP 2 program

Compiler

Output graph
to C put grap

Input graph ———

= Experimental language for graphs.

Rule-based visual manipulation of graphs.
= Computationally complete.

= Non-deterministic.

An Example: Transitive Closure

A graph is transitive if for every directed path v; ~» v, where v; # v,

there is an edge vi — vs.

Main := link!

link(a,b,c,d,e:1list)

OrOr 0, — -0,

where not edge(1l, 3)

An Example: Transitive Closure

An Example: Transitive Closure

L

An Example: Transitive Closure

An Example: Transitive Closure

ﬂ

&

P-GP 2:
A Probabilistic Extension of GP 2

Non-determinism in GP 2

= Calling rule-set R on graph G is non-deterministic in GP 2:
G=x H; € {Hl G:>r,-,g Hand r; € R}

= We extend GP 2's syntax to allow a programmer to specify a
probability distribution over these outcomes.

= This allows a programmer to specify randomized algorithms, a
powerful concept used in broader computer science (see [1]).

Syntax for Rule Calls

A rule-set is executed probabilistically by calling it within square brackets:

[I‘l, ... rn]

A rule-set called using conventional curly brackets is executed
‘non-deterministically’ as in GP 2:

{rn,r...m}

Our extension P-GP 2 is conservative; all existing GP 2 programs are valid
and will be executed as before.

10

Specifying Probabilities |

A rule-set R called on host graph G is executed by:

1. Probabilistically pick a rule r; € R according to a weighted
distribution.
2. Probabilistically pick a match g for rule r; according to a uniform

distribution.

3. Execute (r;, g) on G:
G=,gH

11

Specifying Probabilities |1

We choose a rule first, using a weighted distribution, from the set of rules
with valid matches: R¢.Each rule r; has an associated real-valued positive
weight given by w(r;) - specified in square brackets after the rule
declaration:

grow_loop(n:int) [3.0]
@, — Q)

Then the probability of choosing r; from RC is
w(r;)

>, w(r)

ERC

12

Specifying Probabilities 111

Once rule r; has been chosen, we choose a match for r; with uniform
probability from the set of valid matches G"". Some match g is chosen
with probability

c

Yielding an overall definition of the probability distribution Pgr over the
set of all possible rule-match pairs G*:

oy wn) 1
sz(r,,g) - Z W(I’X) x |Gr"
ERC

13

Related Work

Other approaches look at modeling e.g. Probabilistic GTS (discrete) [2]
and Stochastic GTS (continuous) [3]. These are single graph
transformation systems with probability distributions over outcomes.

We look at programming; sequential graph transformation systems that
algorithmically transform a graph.

14

Applications I:
Karger's Algorithm

Karger’s Algorithm & Minimum Cuts

= Karger's algorithm [4] is a probabilistic algorithm for computing the
minimum cut of a graph with a known lower bound probability of
success.

= The minimum cut of a graph is a minimal set of edges to remove
from a graph to produce two disconnected sub-graphs.

= General idea is to repeatedly contract (merge) adjacent nodes until

only 2 nodes remain.

15

Karger’s Algorithm

16

Karger’s Algorithm

17

Karger’s Algorithm

18

Karger’s Algorithm

19

Karger’s Algorithm

20

Karger’s Algorithm

21

Karger’s Algorithm

5 3,9,10,14

5 1713

4,12

22

Karger’s Algorithm

13

23

Karger’s Guarantee

Consider a global minimum cut of ¢ edges of graph G with n nodes and e
edges:

= The minimum degree of G must be at least ¢, and therefore e > %¢.

= The probability of contracting some edge in the minimum cut is
therefore

[o e}

<5

c 2
55

= The probability of producing the minimum cut (by never contracting
some edge in the minimum cut) is bounded by:

2
Pn>H1—*:,,7_1)

24

Karger’s Algorithm in P-GP 2

Main := (three_node; [pick_pair]; delete_edge!; redirect!; cleanup)!

three_node(a,b,c:1list)

OO =006,

delete_edge(a,b:1list; n:int)
0@ —0 G
1 1

cleanup(a,b:1list)

@ ®—06

pick_pair(a,b:list; n:int)

O~ —@ @

redirect(a,b,c:list; n:int)

® © @0
1 3 1 3
n

25

Karger: An Example

26

Applications II:
G(n, p) Model for Random Graphs

The G(n, p) Model

The G(n, p) [5] model randomly generates graphs (V, E, s, t) such that:
. Vi=n

= For each pair in V x V, an edge exists with probability p.

27

Sampling the G(n, p) del in P-GP 2

Main := (pick_edge; [keep_edge, delete_edgel)!; unmark_edge

pick_edge(a,b,c:1list)
OO, =06,

unmark_edge(a,b,c:1list)

OO, =G0,

keep_edge(a,b,c:1list) [p]
:::1 : (::Z - (::l ’ C::z

delete_edge(a,b,c:1list) [1.0 - p]

@O0, — @, ©,

Expects, as input, a fully connected graph with n nodes.

28

G(n, p): an Example

= A graph with M edges occurs with probability
pM(1 — p)E)-M

= G(n,0.4), with probability 0.0207:

29

Applications llI:
Evolving Graphs by Graph
Programming

Why Evolve Graphs?

Graphs are ubiquitous:
(Neural/Bayesian) Networks, (Quantum) Circuits, Syntax Trees etc.

Evolutionary Algorithms iteratively explore poorly understood domains.

P-GP 2 mutations — Fitness function
) Surviving Graphs
(hopefully) introduce V> selects and removes
repopulate .
innovation least fit Graphs

In this work we focus on digital circuit benchmarks.

30

EGGP

An Evolutionary Algorithm for learning graphs:

()
G/

(2
)

&)

0= (k| ih)V (Vi)

31

Edge Mutations in P-GP 2

Main := try ([pick_edge]; mark_output!; [mutate_edgel]; unmark!)

pick_edge(a,b,c:1list)

OO, — 0@
1 2 1 2

mark_output(a,b,c:list)

O—0. — 00,

unmark (a:1list)

© —06,

mutate_edge(a,b,c,d:1list; s:string)

BSOS

b —
.2 @2
where s != "OUT"

32

Edge Mutations

33

ORNO
N
NG
OO

34

Edge Mutations: mark_output!

7

35

Edge Mutations: [mutate_edge]

SN

36

Edge Mutations: unmark!

SN

37

EGGP vs. CGP

CGP is a standard algorithm for evolving directed acyclic graphs, and was
originally designed for evolving circuits [6].

EGGP CGP
Problem Median Evaluations Median Evaluations p A
5-Bit Odd Parity 38,790 96,372 1018 0.86
6-Bit Odd Parity 68,032 502,335 1073t 0.97
7-Bit Odd Parity 158,852 1,722,377 10733 0.99
8-Bit Odd Parity 315,810 7,617,310 10734 0.99

Results from Digital Circuit benchmarks for CGP and EGGP. The p value
is from the two-tailed Mann-Whitney U test. Where p < 0.05, the effect
size from the Vargha-Delaney A test is shown; large effect sizes

(A > 0.71) are shown in bold.

38

Conclusion

Conclusion

Contributions:

= Extended GP 2 to allow probabilistic rule-call execution.
= Implemented 3 distinct & previously impossible probabilistic graph
programs using P-GP 2.

Future Work:
= What other randomized algorithms can we now implement?

= What other randomized algorithms can’t we implement?

= Investigate efficiency of matching strategies e.g. incremental pattern
matching.

39

Thank you!

P-GP 2:
https://github.com/UoYCS-plasma/P-GP2
EGGP:
https://github.com/UoYCS-plasma/EGGP

40

References i

El Rajeev Motwani and Prabhakar Raghavan.
Randomized Algorithms.
Cambridge University Press, 1995.

[d Christian Krause and Holger Giese.
Probabilistic graph transformation systems.
In Proc. International Conference on Graph Transformation (ICGT
2012), volume 7562, pages 311-325. Springer, 2012.

[4 Reiko Heckel, Georgios Lajios, and Sebastian Menge.
Stochastic graph transformation systems.
Fundamenta Informaticae, 74(1):63-84, 2006.

41

References ii

@ David R. Karger.
Global min-cuts in RNC, and other ramifications of a simple
min-cut algorithm.
In Proc. 4th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 1993), pages 21-30. Society for Industrial and Applied
Mathematics, 1993.

[E. N. Gilbert.
Random graphs.
The Annals of Mathematical Statistics, 30(4):1141-1144, 1959.

@ Julian F. Miller, editor.
Cartesian Genetic Programming.
Springer, 2011.

42

	Introduction to GP2
	P-GP2: A Probabilistic Extension of GP2
	Applications I: Karger's Algorithm
	Applications II: G(n, p) Model for Random Graphs
	Applications III: Evolving Graphs by Graph Programming
	Conclusion

