
Probabilistic Graph Programming for
Randomized and Evolutionary Algorithms

Timothy Atkinson Detlef Plump Susan Stepney

University of York

Introduction to GP 2

Graph Programming Language GP 2

Compiler
to C

GP 2 program

Input graph Output graph

• Experimental language for graphs.
• Rule-based visual manipulation of graphs.
• Computationally complete.
• Non-deterministic.

1

An Example: Transitive Closure

A graph is transitive if for every directed path v1 ⇝ v2 where v1 ̸= v2
there is an edge v1 → v2.

Main := link!

link(a,b,c,d,e:list)

a
1

c
2

e
3

b d a
1

c
2

e
3

b d

where not edge(1, 3)

2

An Example: Transitive Closure

3

An Example: Transitive Closure

4

An Example: Transitive Closure

5

An Example: Transitive Closure

6

An Example: Transitive Closure

7

An Example: Transitive Closure

∗

8

P-GP 2:
A Probabilistic Extension of GP 2

Non-determinism in GP 2

• Calling rule-set R on graph G is non-deterministic in GP 2:

G ⇒R Hi ∈ {H | G ⇒ri,g H and ri ∈ R}

• We extend GP 2’s syntax to allow a programmer to specify a
probability distribution over these outcomes.

• This allows a programmer to specify randomized algorithms, a
powerful concept used in broader computer science (see [1]).

9

Syntax for Rule Calls

A rule-set is executed probabilistically by calling it within square brackets:

[r1, r2 . . . rn]

A rule-set called using conventional curly brackets is executed
‘non-deterministically’ as in GP 2:

{r1, r2 . . . rn}

Our extension P-GP 2 is conservative; all existing GP 2 programs are valid
and will be executed as before.

10

Specifying Probabilities I

A rule-set R called on host graph G is executed by:

1. Probabilistically pick a rule ri ∈ R according to a weighted
distribution.

2. Probabilistically pick a match g for rule ri according to a uniform
distribution.

3. Execute (ri, g) on G:
G ⇒ri,g H

11

Specifying Probabilities II

We choose a rule first, using a weighted distribution, from the set of rules
with valid matches; RG.Each rule ri has an associated real-valued positive
weight given by w(ri) - specified in square brackets after the rule
declaration:

grow_loop(n:int) [3.0]

n
1

n
1

1 2

Then the probability of choosing ri from RG is

w(ri)∑
rx∈RG

w(rx)

12

Specifying Probabilities III

Once rule ri has been chosen, we choose a match for ri with uniform
probability from the set of valid matches Gri . Some match g is chosen
with probability

1
|Gri |

Yielding an overall definition of the probability distribution PGR over the
set of all possible rule-match pairs GR:

PGR(ri, g) = w(ri)∑
rx∈RG

w(rx)
× 1

|Gri |

13

Related Work

Other approaches look at modeling e.g. Probabilistic GTS (discrete) [2]
and Stochastic GTS (continuous) [3]. These are single graph
transformation systems with probability distributions over outcomes.

We look at programming; sequential graph transformation systems that
algorithmically transform a graph.

14

Applications I:
Karger’s Algorithm

Karger’s Algorithm & Minimum Cuts

• Karger’s algorithm [4] is a probabilistic algorithm for computing the
minimum cut of a graph with a known lower bound probability of
success.

• The minimum cut of a graph is a minimal set of edges to remove
from a graph to produce two disconnected sub-graphs.

• General idea is to repeatedly contract (merge) adjacent nodes until
only 2 nodes remain.

15

Karger’s Algorithm

1 2 3

4 5 6 7 8 9 10 11

12 13 14

16

Karger’s Algorithm

1 2 3

4 5 6 7 8 9 10 11

12 13 14

17

Karger’s Algorithm

1 2 3,9

4 5 6 7 8 10,14

12 13

18

Karger’s Algorithm

1 2 3,9

4 5 6 7 8 10,14

12 13

19

Karger’s Algorithm

2 3,9

5 1,7 8 10,14

4,12 13

20

Karger’s Algorithm

2 3,9

5 1,7 8 10,14

4,12 13

21

Karger’s Algorithm

2 3,9,10,14

5 1,7

4,12

13

22

Karger’s Algorithm

2

13

23

Karger’s Guarantee

Consider a global minimum cut of c edges of graph G with n nodes and e
edges:

• The minimum degree of G must be at least c, and therefore e ≥ n.c
2 .

• The probability of contracting some edge in the minimum cut is
therefore c

e ≤ c
n.c
2

= 2
n

• The probability of producing the minimum cut (by never contracting
some edge in the minimum cut) is bounded by:

pn ≥
n∏

i=3
1 − 2

i = 2
n(n − 1)

24

Karger’s Algorithm in P-GP 2

Main := (three_node; [pick_pair]; delete_edge!; redirect!; cleanup)!

three_node(a,b,c:list)

a
1

b
2

c
3

a
1

b
2

c
3

delete_edge(a,b:list; n:int)

a
1

b
2

n a
1

b
2

cleanup(a,b:list)

a
1

b
2

a
1

pick_pair(a,b:list; n:int)

a
1

b
2

n a
1

b
2

redirect(a,b,c:list; n:int)

a
1

b
2

c
3

n
a

1

b
2

c
3

n

25

Karger: An Example

1 2 3

4 5 6 7 8 9 10 11

12 13 14

2

13
∗

pn ≥ 2
8.(8 − 1) = 1

28

26

Applications II:
G(n, p) Model for Random Graphs

The G(n, p) Model

The G(n, p) [5] model randomly generates graphs (V, E, s, t) such that:

• |V| = n.
• For each pair in V × V, an edge exists with probability p.

27

Sampling the G(n, p) model in P-GP 2

Main := (pick_edge; [keep_edge, delete_edge])!; unmark_edge!

pick_edge(a,b,c:list)

a
1

c
2

b a
1

c
2

b

unmark_edge(a,b,c:list)

a
1

c
2

b a
1

c
2

b

keep_edge(a,b,c:list) [p]

a
1

c
2

b a
1

c
2

b

delete_edge(a,b,c:list) [1.0 - p]

a
1

c
2

b a
1

c
2

Expects, as input, a fully connected graph with n nodes.

28

G(n, p): an Example

• A graph with M edges occurs with probability

pM(1 − p)(
n
2)−M

• G(n, 0.4), with probability 0.0207:

1 2

3 4

1 2

3 4

∗

29

Applications III:
Evolving Graphs by Graph
Programming

Why Evolve Graphs?

Graphs are ubiquitous:
(Neural/Bayesian) Networks, (Quantum) Circuits, Syntax Trees etc.

Evolutionary Algorithms iteratively explore poorly understood domains.

P-GP 2 mutations
(hopefully) introduce

innovation

Surviving Graphs
repopulate

Fitness function
selects and removes

least fit Graphs

In this work we focus on digital circuit benchmarks.
30

EGGP

An Evolutionary Algorithm for learning graphs:

i2 i1

NOR OR OR

NOR OR AND AND

AND OR NOR

o2 o1

o2 = (i2 ↓ i1) ∨ (i2 ∨ i1)

31

Edge Mutations in P-GP 2

Main := try ([pick_edge]; mark_output!; [mutate_edge]; unmark!)

pick_edge(a,b,c:list)

a
1

c
2

b a
1

c
2

b

mark_output(a,b,c:list)

a
1

c
2

b a
1

c
2

b

unmark(a:list)

a
1

a
1

mutate_edge(a,b,c,d:list; s:string)

a
1

c
2

d:s
3

b

a
1

c
2

d:s
3

b

where s != "OUT"

32

Edge Mutations

i2 i1

NOR OR OR

NOR OR AND AND

AND OR NOR

o2 o1

33

Edge Mutations: [pick_edge]

i2 i1

NOR OR OR

NOR OR AND AND

AND OR NOR

o2 o1

34

Edge Mutations: mark_output!

i2 i1

NOR OR OR

NOR OR AND AND

AND OR NOR

o2 o1

35

Edge Mutations: [mutate_edge]

i2 i1

NOR OR OR

NOR OR AND AND

AND OR NOR

o2 o1

36

Edge Mutations: unmark!

i2 i1

NOR OR OR

NOR OR AND AND

AND OR NOR

o2 o1

37

EGGP vs. CGP

CGP is a standard algorithm for evolving directed acyclic graphs, and was
originally designed for evolving circuits [6].

EGGP CGP
Problem Median Evaluations Median Evaluations p A

5-Bit Odd Parity 38,790 96,372 10−18 0.86
6-Bit Odd Parity 68,032 502,335 10−31 0.97
7-Bit Odd Parity 158,852 1,722,377 10−33 0.99
8-Bit Odd Parity 315,810 7,617,310 10−34 0.99

Results from Digital Circuit benchmarks for CGP and EGGP. The p value
is from the two-tailed Mann-Whitney U test. Where p < 0.05, the effect
size from the Vargha-Delaney A test is shown; large effect sizes
(A > 0.71) are shown in bold.

38

Conclusion

Conclusion

Contributions:

• Extended GP 2 to allow probabilistic rule-call execution.
• Implemented 3 distinct & previously impossible probabilistic graph

programs using P-GP 2.

Future Work:

• What other randomized algorithms can we now implement?
• What other randomized algorithms can’t we implement?
• Investigate efficiency of matching strategies e.g. incremental pattern

matching.

39

Thank you!

P-GP 2:
https://github.com/UoYCS-plasma/P-GP2
EGGP:
https://github.com/UoYCS-plasma/EGGP

40

References i

Rajeev Motwani and Prabhakar Raghavan.
Randomized Algorithms.
Cambridge University Press, 1995.
Christian Krause and Holger Giese.
Probabilistic graph transformation systems.
In Proc. International Conference on Graph Transformation (ICGT
2012), volume 7562, pages 311–325. Springer, 2012.

Reiko Heckel, Georgios Lajios, and Sebastian Menge.
Stochastic graph transformation systems.
Fundamenta Informaticae, 74(1):63–84, 2006.

41

References ii

David R. Karger.
Global min-cuts in RNC, and other ramifications of a simple
min-cut algorithm.
In Proc. 4th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 1993), pages 21–30. Society for Industrial and Applied
Mathematics, 1993.
E. N. Gilbert.
Random graphs.
The Annals of Mathematical Statistics, 30(4):1141–1144, 1959.

Julian F. Miller, editor.
Cartesian Genetic Programming.
Springer, 2011.

42

	Introduction to GP2
	P-GP2: A Probabilistic Extension of GP2
	Applications I: Karger's Algorithm
	Applications II: G(n, p) Model for Random Graphs
	Applications III: Evolving Graphs by Graph Programming
	Conclusion

