Probabilistic Graph Programming for Randomized and Evolutionary Algorithms

Timothy Atkinson Detlef Plump Susan Stepney

University of York

Introduction to GP 2

Graph Programming Language GP 2

- Experimental language for graphs.
- Rule-based visual manipulation of graphs.
- Computationally complete.
- Non-deterministic.

An Example: Transitive Closure

A graph is transitive if for every directed path $v_{1} \rightsquigarrow v_{2}$ where $v_{1} \neq v_{2}$ there is an edge $v_{1} \rightarrow v_{2}$.

Main $:=$ link!
link(a,b, c, d,e:list)

where not edge(1, 3)

An Example: Transitive Closure

An Example: Transitive Closure

An Example: Transitive Closure

P-GP 2:
A Probabilistic Extension of GP 2

Non-determinism in GP 2

- Calling rule-set \mathcal{R} on graph G is non-deterministic in GP 2:

$$
G \Rightarrow_{\mathcal{R}} H_{i} \in\left\{H \mid G \Rightarrow_{r_{i}, g} H \text { and } r_{i} \in \mathcal{R}\right\}
$$

- We extend GP 2's syntax to allow a programmer to specify a probability distribution over these outcomes.
- This allows a programmer to specify randomized algorithms, a powerful concept used in broader computer science (see [1]).

Syntax for Rule Calls

A rule-set is executed probabilistically by calling it within square brackets:

$$
\left[r_{1}, r_{2} \ldots r_{n}\right]
$$

A rule-set called using conventional curly brackets is executed 'non-deterministically' as in GP 2:

$$
\left\{r_{1}, r_{2} \ldots r_{n}\right\}
$$

Our extension P-GP 2 is conservative; all existing GP 2 programs are valid and will be executed as before.

Specifying Probabilities I

A rule-set \mathcal{R} called on host graph G is executed by:

1. Probabilistically pick a rule $r_{i} \in \mathcal{R}$ according to a weighted distribution.
2. Probabilistically pick a match g for rule r_{i} according to a uniform distribution.
3. Execute $\left(r_{i}, g\right)$ on G :

$$
G \Rightarrow \Rightarrow_{r_{i, g}} H
$$

Specifying Probabilities II

We choose a rule first, using a weighted distribution, from the set of rules with valid matches; \mathcal{R}^{G}. Each rule r_{i} has an associated real-valued positive weight given by $w\left(r_{i}\right)$ - specified in square brackets after the rule declaration:

$$
\begin{aligned}
& \text { grow_loop(n:int) [3.0] } \\
& \mathrm{CB}_{1} \longrightarrow \mathrm{n}_{2}
\end{aligned}
$$

Then the probability of choosing r_{i} from \mathcal{R}^{G} is

$$
\frac{w\left(r_{i}\right)}{\sum_{r_{x} \in \mathcal{R}^{G}} w\left(r_{x}\right)}
$$

Specifying Probabilities III

Once rule r_{i} has been chosen, we choose a match for r_{i} with uniform probability from the set of valid matches $G^{r_{i}}$. Some match g is chosen with probability

$$
\frac{1}{\left|G^{r_{i}}\right|}
$$

Yielding an overall definition of the probability distribution $P_{G^{\mathcal{R}}}$ over the set of all possible rule-match pairs $G^{\mathcal{R}}$:

$$
P_{G^{\mathcal{R}}}\left(r_{i}, g\right)=\frac{w\left(r_{i}\right)}{\sum_{r_{x} \in \mathcal{R}^{G}} w\left(r_{x}\right)} \times \frac{1}{\left|G^{r_{i}}\right|}
$$

Related Work

Other approaches look at modeling e.g. Probabilistic GTS (discrete) [2] and Stochastic GTS (continuous) [3]. These are single graph transformation systems with probability distributions over outcomes.

We look at programming; sequential graph transformation systems that algorithmically transform a graph.

Applications I:

Karger's Algorithm

Karger's Algorithm \& Minimum Cuts

- Karger's algorithm [4] is a probabilistic algorithm for computing the minimum cut of a graph with a known lower bound probability of success.
- The minimum cut of a graph is a minimal set of edges to remove from a graph to produce two disconnected sub-graphs.
- General idea is to repeatedly contract (merge) adjacent nodes until only 2 nodes remain.

Karger's Algorithm

Karger's Algorithm

Karger's Algorithm

Karger's Algorithm

Karger's Algorithm

Karger's Algorithm

Karger's Algorithm

Karger's Algorithm

Karger's Guarantee

Consider a global minimum cut of c edges of graph G with n nodes and e edges:

- The minimum degree of G must be at least c, and therefore $e \geq \frac{n \cdot c}{2}$.
- The probability of contracting some edge in the minimum cut is therefore

$$
\frac{c}{e} \leq \frac{c}{\frac{n \cdot c}{2}}=\frac{2}{n}
$$

- The probability of producing the minimum cut (by never contracting some edge in the minimum cut) is bounded by:

$$
p_{n} \geq \prod_{i=3}^{n} 1-\frac{2}{i}=\frac{2}{n(n-1)}
$$

Karger's Algorithm in P-GP 2

Karger: An Example

Applications II:
$G(n, p)$ Model for Random Graphs

The $G(n, p)$ Model

The $G(n, p)[5]$ model randomly generates graphs (V, E, s, t) such that:

- $|V|=n$.
- For each pair in $V \times V$, an edge exists with probability p.

Sampling the $G(n, p)$ model in P-GP 2

Main := (pick_edge; [keep_edge, delete_edge])!; unmark_edge!
pick_edge(a,b, c:list)

unmark_edge(a,b, c:list)

keep_edge(a,b, c:list) [p]

delete_edge(a,b,c:list) [1.0 - p]
(a) $\stackrel{\mathrm{b}}{\leftrightarrows} \mathrm{c}_{2} \Longrightarrow \mathrm{Ca}_{1} \quad \mathrm{C}_{2}$

Expects, as input, a fully connected graph with n nodes.

$G(n, p)$: an Example

- A graph with M edges occurs with probability

$$
p^{M}(1-p)^{\binom{n}{2}-M}
$$

- $G(n, 0.4)$, with probability 0.0207 :

Applications III:

Evolving Graphs by Graph
Programming

Why Evolve Graphs?

Graphs are ubiquitous:
(Neural/Bayesian) Networks, (Quantum) Circuits, Syntax Trees etc.
Evolutionary Algorithms iteratively explore poorly understood domains.

In this work we focus on digital circuit benchmarks.

EGGP

An Evolutionary Algorithm for learning graphs:

Edge Mutations in P-GP 2

Main $:=\operatorname{try}\left(\left[p i c k _e d g e\right] ;\right.$ mark_output!; [mutate_edge]; unmark!)
pick_edge(a,b, c:list)

mark_output(a,b, c:list)

unmark(a:list)


```
mutate_edge(a,b,c,d:list; s:string)
```


where s != "OUT"

Edge Mutations

Edge Mutations: [pick_edge]

Edge Mutations: mark_output!

Edge Mutations: [mutate_edge]

Edge Mutations: unmark!

EGGP vs. CGP

CGP is a standard algorithm for evolving directed acyclic graphs, and was originally designed for evolving circuits [6].

Problem	EGGP	CGP	p	A
	Median Evaluations	Median Evaluations		
5-Bit Odd Parity	38,790	96,372	10^{-18}	0.86
6-Bit Odd Parity	68,032	502,335	10^{-31}	0.97
7-Bit Odd Parity	158,852	1,722,377	10^{-33}	0.99
8-Bit Odd Parity	315,810	7,617,310	10^{-34}	0.99

Results from Digital Circuit benchmarks for CGP and EGGP. The p value is from the two-tailed Mann-Whitney U test. Where $p<0.05$, the effect size from the Vargha-Delaney A test is shown; large effect sizes ($A>0.71$) are shown in bold.

Conclusion

Conclusion

Contributions:

- Extended GP 2 to allow probabilistic rule-call execution.
- Implemented 3 distinct \& previously impossible probabilistic graph programs using P-GP 2.

Future Work:

- What other randomized algorithms can we now implement?
- What other randomized algorithms can't we implement?
- Investigate efficiency of matching strategies e.g. incremental pattern matching.

Thank you!

P-GP 2:
https://github.com/UoYCS-plasma/P-GP2
EGGP:
https://github.com/UoYCS-plasma/EGGP

References i

易
Rajeev Motwani and Prabhakar Raghavan.
Randomized Algorithms.
Cambridge University Press, 1995.
R Christian Krause and Holger Giese.
Probabilistic graph transformation systems.
In Proc. International Conference on Graph Transformation (ICGT 2012), volume 7562, pages 311-325. Springer, 2012.

Reiko Heckel, Georgios Lajios, and Sebastian Menge.
Stochastic graph transformation systems.
Fundamenta Informaticae, 74(1):63-84, 2006.

References ii

围 David R. Karger.
Global min-cuts in RNC, and other ramifications of a simple min-cut algorithm.
In Proc. 4th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 1993), pages 21-30. Society for Industrial and Applied
Mathematics, 1993.
E. N. Gilbert.

Random graphs.
The Annals of Mathematical Statistics, 30(4):1141-1144, 1959.
荀 Julian F. Miller, editor.
Cartesian Genetic Programming.
Springer, 2011.

