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Introduction to GP 2



Graph Programming Language GP 2

GP 2 program

Compiler

Output graph
to C put grap

Input graph ———

= Experimental language for graphs.

Rule-based visual manipulation of graphs.
= Computationally complete.

= Non-deterministic.



An Example: Transitive Closure

A graph is transitive if for every directed path v; ~» v, where v; # v,

there is an edge vi — vs.

Main := link!

link(a,b,c,d,e:1list)

OrOr 0, — -0,

where not edge(1l, 3)
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P-GP 2:
A Probabilistic Extension of GP 2



Non-determinism in GP 2

= Calling rule-set R on graph G is non-deterministic in GP 2:
G=x H; € {Hl G:>r,-,g Hand r; € R}

= We extend GP 2's syntax to allow a programmer to specify a
probability distribution over these outcomes.

= This allows a programmer to specify randomized algorithms, a
powerful concept used in broader computer science (see [1]).



Syntax for Rule Calls

A rule-set is executed probabilistically by calling it within square brackets:

[I‘l, ... rn]

A rule-set called using conventional curly brackets is executed
‘non-deterministically’ as in GP 2:

{rn,r...m}

Our extension P-GP 2 is conservative; all existing GP 2 programs are valid
and will be executed as before.
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Specifying Probabilities |

A rule-set R called on host graph G is executed by:

1. Probabilistically pick a rule r; € R according to a weighted
distribution.
2. Probabilistically pick a match g for rule r; according to a uniform

distribution.

3. Execute (r;, g) on G:
G=,gH
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Specifying Probabilities |1

We choose a rule first, using a weighted distribution, from the set of rules
with valid matches: R¢.Each rule r; has an associated real-valued positive
weight given by w(r;) - specified in square brackets after the rule
declaration:

grow_loop(n:int) [3.0]
@, — Q)

Then the probability of choosing r; from RC is
w(r;)

>, w(r)

ERC
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Specifying Probabilities 111

Once rule r; has been chosen, we choose a match for r; with uniform
probability from the set of valid matches G"". Some match g is chosen
with probability

c

Yielding an overall definition of the probability distribution Pgr over the
set of all possible rule-match pairs G*:

oy wn) 1
sz(r,,g) - Z W(I’X) x |Gr"
ERC
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Related Work

Other approaches look at modeling e.g. Probabilistic GTS (discrete) [2]
and Stochastic GTS (continuous) [3]. These are single graph
transformation systems with probability distributions over outcomes.

We look at programming; sequential graph transformation systems that
algorithmically transform a graph.
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Applications I:
Karger's Algorithm




Karger’s Algorithm & Minimum Cuts

= Karger's algorithm [4] is a probabilistic algorithm for computing the
minimum cut of a graph with a known lower bound probability of
success.

= The minimum cut of a graph is a minimal set of edges to remove
from a graph to produce two disconnected sub-graphs.

= General idea is to repeatedly contract (merge) adjacent nodes until

only 2 nodes remain.
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Karger’s Algorithm
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Karger’s Algorithm
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Karger’s Algorithm
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Karger’s Algorithm
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Karger’s Algorithm
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Karger’s Algorithm
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Karger’s Algorithm

5 3,9,10,14
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Karger’s Algorithm
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Karger’s Guarantee

Consider a global minimum cut of ¢ edges of graph G with n nodes and e
edges:

= The minimum degree of G must be at least ¢, and therefore e > %¢.

= The probability of contracting some edge in the minimum cut is
therefore

[o e}

<5

c 2
55

= The probability of producing the minimum cut (by never contracting
some edge in the minimum cut) is bounded by:

2
Pn>H1—*:,,7_1)
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Karger’s Algorithm in P-GP 2

Main := (three_node; [pick_pair]; delete_edge!; redirect!; cleanup)!

three_node(a,b,c:1list)

OO =006,

delete_edge(a,b:1list; n:int)
0@ —0 G
1 1

cleanup(a,b:1list)

@ ®—06

pick_pair(a,b:list; n:int)

O~ —@ @

redirect(a,b,c:list; n:int)

® © @0
1 3 1 3
n
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Karger: An Example
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Applications II:
G(n, p) Model for Random Graphs




The G(n, p) Model

The G(n, p) [5] model randomly generates graphs (V, E, s, t) such that:
. Vi=n

= For each pair in V x V, an edge exists with probability p.
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Sampling the G(n, p) del in P-GP 2

Main := (pick_edge; [keep_edge, delete_edgel)!; unmark_edge

pick_edge(a,b,c:1list)
OO, =06,

unmark_edge(a,b,c:1list)

OO, =G0,

keep_edge(a,b,c:1list) [p]
:::1 : (::Z - (::l ’ C::z

delete_edge(a,b,c:1list) [1.0 - p]

@O0, — @, ©,

Expects, as input, a fully connected graph with n nodes.
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G(n, p): an Example

= A graph with M edges occurs with probability
pM(1 — p)E)-M

= G(n,0.4), with probability 0.0207:

29



Applications llI:
Evolving Graphs by Graph
Programming




Why Evolve Graphs?

Graphs are ubiquitous:
(Neural/Bayesian) Networks, (Quantum) Circuits, Syntax Trees etc.

Evolutionary Algorithms iteratively explore poorly understood domains.

P-GP 2 mutations — Fitness function
) Surviving Graphs
(hopefully) introduce V> selects and removes
repopulate .
innovation least fit Graphs

In this work we focus on digital circuit benchmarks.
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EGGP

An Evolutionary Algorithm for learning graphs:

()
G/

(2
)

&)

0= (k| ih)V (Vi)
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Edge Mutations in P-GP 2

Main := try ([pick_edge]; mark_output!; [mutate_edgel]; unmark!)

pick_edge(a,b,c:1list)

OO, — 0@
1 2 1 2

mark_output(a,b,c:list)

O—0. — 00,

unmark (a:1list)

© —06,

mutate_edge(a,b,c,d:1list; s:string)

BSOS

b —
.2 @2
where s != "OUT"
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Edge Mutations
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Edge Mutations: mark_output!

7
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Edge Mutations: [mutate_edge]

SN
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Edge Mutations: unmark!

SN
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EGGP vs. CGP

CGP is a standard algorithm for evolving directed acyclic graphs, and was
originally designed for evolving circuits [6].

EGGP CGP
Problem Median Evaluations Median Evaluations p A
5-Bit Odd Parity 38,790 96,372 1018 0.86
6-Bit Odd Parity 68,032 502,335 1073t 0.97
7-Bit Odd Parity 158,852 1,722,377 10733 0.99
8-Bit Odd Parity 315,810 7,617,310 10734 0.99

Results from Digital Circuit benchmarks for CGP and EGGP. The p value
is from the two-tailed Mann-Whitney U test. Where p < 0.05, the effect
size from the Vargha-Delaney A test is shown; large effect sizes

(A > 0.71) are shown in bold.
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Conclusion




Conclusion

Contributions:

= Extended GP 2 to allow probabilistic rule-call execution.
= Implemented 3 distinct & previously impossible probabilistic graph
programs using P-GP 2.

Future Work:
= What other randomized algorithms can we now implement?

= What other randomized algorithms can’t we implement?

= Investigate efficiency of matching strategies e.g. incremental pattern
matching.
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Thank you!

P-GP 2:
https://github.com/UoYCS-plasma/P-GP2
EGGP:
https://github.com/UoYCS-plasma/EGGP
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