On the Essence and Initiality of Conflicts

Guilherme Grochau Azzi¹, Andrea Corradini ${ }^{2}$ and Leila Ribeiro ${ }^{1}$

${ }^{1}$ Instituto de Informática
Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
${ }^{2}$ Dipartimento di Informatica Università di Pisa, Pisa, Italy

11th International Conference on Graph Transformation, June 2018

Parallel Independence of Transformations

Parallel Independence of Transformations

Parallel Independence of Transformations

Conflict

Motivation

- Conflicts capture important information about behaviour
- Enumerating potential conflicts has many applications
- Critical pairs or initial conflicts
- Understanding root causes is often important

Background: The DPO Approach

Rule: $\quad \rho=L \stackrel{\iota}{\leftarrow} K \stackrel{r}{\mapsto} R$
Match: $m: L \mapsto G$
Transformation: $\quad G \stackrel{\rho, m}{\Longrightarrow} H$

$$
\begin{aligned}
& L \stackrel{I}{\longleftrightarrow} K \xrightarrow{r} R
\end{aligned}
$$

$$
\begin{aligned}
& G \underset{g}{\longleftarrow} D \underset{h}{\longrightarrow} H
\end{aligned}
$$

New Perspective

- Previous work based on the standard condition for parallel independence

New Perspective

- Previous work based on the standard condition for parallel independence

- Recently: essential condition for parallel independence (Corradini et al. 2018)
- Equivalent to standard condition

New Perspective

- Previous work based on the standard condition for parallel independence

- Recently: essential condition for parallel independence (Corradini et al. 2018)
- Equivalent to standard condition
- Goal: review characterization of conflicts under new light

Background: Adhesive Categories

Subobjects behave like subsets

Background: Adhesive Categories

Subobjects behave like subsets

Lemma (Lack and Sobocinski 2005)
In adhesive categories, $\operatorname{Sub}(X)$ is distributive lattice

Background: Adhesive Categories

Subobjects behave like subsets

Lemma (Lack and Sobocinski 2005)
In adhesive categories, $\operatorname{Sub}(X)$ is distributive lattice

Containment existence of mono

Background: Adhesive Categories

Subobjects behave like subsets

Lemma (Lack and Sobocinski 2005)
In adhesive categories, $\operatorname{Sub}(X)$ is distributive lattice

Containment existence of mono Intersection pullback

Background: Adhesive Categories

Subobjects behave like subsets

Lemma (Lack and Sobocinski 2005)

In adhesive categories, $\mathbf{\operatorname { S u b }}(X)$ is distributive lattice

Containment existence of mono Intersection pullback

Background: Adhesive Categories

Subobjects behave like subsets

Lemma (Lack and Sobocinski 2005)

In adhesive categories, $\operatorname{Sub}(X)$ is distributive lattice

Containment existence of mono Intersection pullback

Background: Adhesive Categories

Subobjects behave like subsets

Lemma (Lack and Sobocinski 2005)

In adhesive categories, $\operatorname{Sub}(X)$ is distributive lattice

Containment existence of mono Intersection pullback

Union pushout over intersection

Background: Adhesive Categories

Subobjects behave like subsets

Lemma (Lack and Sobocinski 2005)

In adhesive categories, $\operatorname{Sub}(X)$ is distributive lattice

Containment existence of mono Intersection pullback

Union pushout over intersection

Background: Adhesive Categories

Subobjects behave like subsets

Lemma (Lack and Sobocinski 2005)

In adhesive categories, $\operatorname{Sub}(X)$ is distributive lattice

Containment existence of mono Intersection pullback

Union pushout over intersection

Background: Adhesive Categories

Subobjects behave like subsets

Lemma (Lack and Sobocinski 2005)
In adhesive categories, $\operatorname{Sub}(X)$ is distributive lattice

Containment existence of mono
Intersection pullback
Union pushout over intersection
Top is X

Background: Adhesive Categories

Subobjects behave like subsets

Lemma (Lack and Sobocinski 2005)
In adhesive categories, $\operatorname{Sub}(X)$ is distributive lattice

Containment existence of mono
Intersection pullback
Union pushout over intersection
Top is X
Bottom usually "empty", if exists

Background: Set-Valued Functor Categories

- Some results not proven for all adhesive categories

Background: Set-Valued Functor Categories

- Some results not proven for all adhesive categories
- We use categories $\mathbb{S e t}{ }^{\mathbb{S}}$ of functors $\mathbb{S} \rightarrow \mathbb{S}$ et with natural transformations as arrows (essentially presheaves)
- Generalizes graphs and graph structures

$$
\mathbb{G}^{\text {raph }}=\operatorname{Set}^{\mathbb{G}} \quad \mathbb{G}=V \underset{t}{\stackrel{s}{\longrightarrow}} E
$$

Background: Set-Valued Functor Categories

- Some results not proven for all adhesive categories
- We use categories $\mathbb{S e t}{ }^{\mathbb{S}}$ of functors $\mathbb{S} \rightarrow \mathbb{S}$ et with natural transformations as arrows (essentially presheaves)
- Generalizes graphs and graph structures

$$
\text { Graph }=\operatorname{Set}^{\mathbb{G}} \quad \mathbb{G}=V \underset{t}{\stackrel{s}{\rightrightarrows}} E
$$

- Limits, colimits, monos and epis are pointwise
- Always adhesive

Outline

1. Characterize conflict between transformations
2. Useful properties of the characterization
3. Compare with conflict reasons of Lambers, Ehrig, and Orejas (2008)
4. Relate to initial conflicts

Essential Condition of Parallel Independence

Corradini et al. (2018)

$$
H_{1} \stackrel{t_{1}}{\rightleftharpoons} G \stackrel{t_{2}}{\Longrightarrow} H_{2}
$$

Essential Condition of Parallel Independence

Corradini et al. (2018)

$$
H_{1} \stackrel{t_{1}}{\Longleftrightarrow} G \stackrel{t_{2}}{\Longrightarrow} H_{2}
$$

Essential Condition of Parallel Independence

Corradini et al. (2018)

$$
H_{1} \stackrel{t_{1}}{\Longleftrightarrow} G \xlongequal{t_{2}} H_{2}
$$

Essential Condition of Parallel Independence

Corradini et al. (2018)

$$
H_{1} \stackrel{t_{1}}{\Longleftrightarrow} G \stackrel{t_{2}}{\Longrightarrow} H_{2}
$$

- Both morphisms iso \Rightarrow parallel independence

Essential Condition of Parallel Independence

Corradini et al. (2018)

$$
H_{1} \stackrel{t_{1}}{\Longleftrightarrow} G \stackrel{t_{2}}{\Longrightarrow} H_{2}
$$

- Both morphisms iso \Rightarrow parallel independence
- Either morphism not iso \Rightarrow conflict

Essential Condition of Parallel Independence

Corradini et al. (2018)

$$
H_{1} \stackrel{t_{1}}{\rightleftharpoons} G \stackrel{t_{2}}{\Longrightarrow} H_{2}
$$

- Both morphisms iso \Rightarrow parallel independence
- Either morphism not iso \Rightarrow conflict
- $K_{1} L_{2} \rightarrow L_{1} L_{2}$ not iso $\Rightarrow t_{1}$ disables t_{2}

Example: Conflict

Example: Conflict

Example: Conflict

Example: Conflict

Determining the Root Cause

- Useful concept: initial pushout over $f: X \rightarrow Y$

$$
\begin{aligned}
& B \succ b \rightarrow X \\
& \bar{f} \downarrow \quad \downarrow f \\
& C \succ c \rightarrow Y
\end{aligned}
$$

- "Categorical diff" for a morphism

Determining the Root Cause

- Useful concept: initial pushout over $f: X \rightarrow Y$

$$
\begin{aligned}
& B \succ b \rightarrow X \\
& \bar{f} \downarrow \quad \downarrow f \\
& C \succ c \rightarrow Y
\end{aligned}
$$

- "Categorical diff" for a morphism
- Context $c: C \rightarrow Y$ contains "modified stuff"
- Boundary $b: B \rightarrow C$ contains "points of contact"

Example: Initial Pushout

Example: Initial Pushout

Example: Initial Pushout

Conflict and Disabling Essences

Definition

Given transformations $\left(t_{1}, t_{2}\right): H_{1} \stackrel{\rho_{1}, m_{1}}{\rightleftharpoons} G \stackrel{\rho_{2}, m_{2}}{\rightleftharpoons} H_{2}$:

Conflict and Disabling Essences

Definition

Given transformations $\left(t_{1}, t_{2}\right): H_{1} \stackrel{\rho_{1}, m_{1}}{\rightleftharpoons} G \stackrel{\rho_{2}, m_{2}}{\rightleftharpoons} H_{2}$:

Conflict and Disabling Essences

Definition

Given transformations $\left(t_{1}, t_{2}\right): H_{1} \stackrel{\rho_{1}, m_{1}}{\rightleftharpoons} G \stackrel{\rho_{2}, m_{2}}{\rightleftharpoons} H_{2}$:

Conflict and Disabling Essences

Definition

Given transformations $\left(t_{1}, t_{2}\right): H_{1} \stackrel{\rho_{1}, m_{1}}{\rightleftharpoons} G \stackrel{\rho_{2}, m_{2}}{\rightleftharpoons} H_{2}$:

- Disabling essence for $\left(t_{1}, t_{2}\right)$ is $c_{1} \in \operatorname{Sub}\left(L_{1} L_{2}\right)$

Conflict and Disabling Essences

Definition

Given transformations $\left(t_{1}, t_{2}\right): H_{1} \stackrel{\rho_{1}, m_{1}}{\rightleftharpoons} G \stackrel{\rho_{2}, m_{2}}{\rightleftharpoons} H_{2}$:

- Disabling essence for $\left(t_{1}, t_{2}\right)$ is $c_{1} \in \operatorname{Sub}\left(L_{1} L_{2}\right)$
- Disabling essence for $\left(t_{2}, t_{1}\right)$ is $c_{2} \in \operatorname{Sub}\left(L_{1} L_{2}\right)$

Conflict and Disabling Essences

Definition

Given transformations $\left(t_{1}, t_{2}\right): H_{1} \stackrel{\rho_{1}, m_{1}}{\rightleftharpoons} G \stackrel{\rho_{2}, m_{2}}{\rightleftharpoons} H_{2}$:

- Disabling essence for $\left(t_{1}, t_{2}\right)$ is $c_{1} \in \operatorname{Sub}\left(L_{1} L_{2}\right)$
- Disabling essence for $\left(t_{2}, t_{1}\right)$ is $c_{2} \in \operatorname{Sub}\left(L_{1} L_{2}\right)$
- Conflict essence for $\left(t_{1}, t_{2}\right)$ is $c=c_{1} \cup c_{2}$

Example: Parallel Independence

No conflict \Longrightarrow no element caused a conflict

Empty Essences

Recall: bottom subobject generalizes "emptiness"

Empty Essences

Recall: bottom subobject generalizes "emptiness"

$$
\text { Consider }\left(t_{1}, t_{2}\right): H_{1} \stackrel{\rho_{1}, m_{1}}{\rightleftharpoons} G \stackrel{\rho_{2}, m_{2}}{\Longrightarrow} H_{2}
$$

Theorem
The conflict essence for $\left(t_{1}, t_{2}\right)$ is $\perp \in \operatorname{Sub}\left(L_{1} L_{2}\right)$ if and only if t_{1} and t_{2} are parallel independent.

Extension

- Same transformation in "larger context"

Extension

- Same transformation in "larger context"

- Lower pushouts ensure t behaves like \bar{t}

Essence Inheritance

Theorem

If extension diagrams below exist, $\left(t_{1}, t_{2}\right)$ and $\left(\overline{t_{1}}, \overline{t_{2}}\right)$ have the same disabling and conflict essences.

Essence Inheritance

Theorem

If extension diagrams below exist, $\left(t_{1}, t_{2}\right)$ and $\left(\overline{t_{1}}, \overline{t_{2}}\right)$ have the same disabling and conflict essences.

Essence Inheritance

Theorem

If extension diagrams below exist, $\left(t_{1}, t_{2}\right)$ and $\left(\overline{t_{1}}, \overline{t_{2}}\right)$ have the same disabling and conflict essences.

Essence Inheritance

In categories of set-valued functors (also graphs, typed graphs...)

Theorem

If extension diagrams below exist, $\left(t_{1}, t_{2}\right)$ and $\left(\overline{t_{1}}, \overline{t_{2}}\right)$ have the same disabling and conflict essences.

Essence Inheritance

In categories of set-valued functors (also graphs, typed graphs...)

Theorem

If extension diagrams below exist, $\left(t_{1}, t_{2}\right)$ and $\left(\overline{t_{1}}, \overline{t_{2}}\right)$ have the same disabling and conflict essences.

Conflicts are preserved and reflected by extension.

Disabling Reasons

Essences are not the first proposed characterization

$$
\text { Given transformations }\left(t_{1}, t_{2}\right): H_{1} \stackrel{\rho_{1}, m_{1}}{\rightleftharpoons} G \stackrel{\rho_{2}, m_{2}}{\Longrightarrow} H_{2}
$$

Definition (Lambers, Ehrig, and Orejas 2008)

The disabling reason $L_{1} \leftarrow S_{1} \rightarrow L_{2}$ for $\left(t_{1}, t_{2}\right)$

Disabling Reasons

Essences are not the first proposed characterization Given transformations $\left(t_{1}, t_{2}\right): H_{1} \stackrel{\rho_{1}, m_{1}}{\rightleftharpoons} G \stackrel{\rho_{2}, m_{2}}{\Longrightarrow} H_{2}$

Definition (Lambers, Ehrig, and Orejas 2008)

The disabling reason $L_{1} \leftarrow S_{1} \rightarrow L_{2}$ for $\left(t_{1}, t_{2}\right)$ is obtained from the initial pushout over l_{1},

$$
\begin{aligned}
B_{l 1}-\bar{l}_{1} \rightarrow & C_{l 1} \\
b_{l 2} \downarrow & \downarrow^{l_{11}} \\
K_{1}-l_{1} \rightarrow & L_{1}
\end{aligned}
$$

Disabling Reasons

Essences are not the first proposed characterization Given transformations $\left(t_{1}, t_{2}\right): H_{1} \stackrel{\rho_{1}, m_{1}}{\rightleftharpoons} G \stackrel{\rho_{2}, m_{2}}{\Longrightarrow} H_{2}$

Definition (Lambers, Ehrig, and Orejas 2008)

The disabling reason $L_{1} \leftarrow S_{1} \rightarrow L_{2}$ for $\left(t_{1}, t_{2}\right)$ is obtained from the initial pushout over l_{1}, then pullback of $\left(m_{1} \circ c_{11}, m_{2}\right)$.

Disabling Reasons

Essences are not the first proposed characterization Given transformations $\left(t_{1}, t_{2}\right): H_{1} \stackrel{\rho_{1}, m_{1}}{\rightleftharpoons} G \stackrel{\rho_{2}, m_{2}}{\Longrightarrow} H_{2}$

Definition (Lambers, Ehrig, and Orejas 2008)

The disabling reason $L_{1} \leftarrow S_{1} \rightarrow L_{2}$ for $\left(t_{1}, t_{2}\right)$ is obtained from the initial pushout over l_{1}, then pullback of $\left(m_{1} \circ c_{l 1}, m_{2}\right)$.

Conflict condition:

There is no b^{*} making diagram commute.

Disabling Reasons

Essences are not the first proposed characterization Given transformations $\left(t_{1}, t_{2}\right): H_{1} \stackrel{\rho_{1}, m_{1}}{\rightleftharpoons} G \stackrel{\rho_{2}, m_{2}}{\Longrightarrow} H_{2}$

Definition (Lambers, Ehrig, and Orejas 2008)

The disabling reason $L_{1} \leftarrow S_{1} \rightarrow L_{2}$ for $\left(t_{1}, t_{2}\right)$ is obtained from the initial pushout over l_{1}, then pullback of ($m_{1} \circ c_{1}, m_{2}$).

Conflict condition:

There is no b^{*} making diagram commute.

Conflict reason is union of relevant disabling reasons.

Comparing Reasons and Essences

- Non-empty reasons exist even with parallel independence

Comparing Reasons and Essences

- Non-empty reasons exist even with parallel independence

Comparing Reasons and Essences

- Non-empty reasons exist even with parallel independence

Comparing Reasons and Essences

- Non-empty reasons exist even with parallel independence

Comparing Reasons and Essences

- Non-empty reasons exist even with parallel independence

- Isolated boundary nodes (Lambers, Born, et al. 2018)

Comparing Reasons and Essences

- Non-empty reasons exist even with parallel independence

- Isolated boundary nodes (Lambers, Born, et al. 2018)
- Inheritance also doesn't hold

Essence \subseteq Reason

Essence \subseteq Reason

Remark

Conflict reason determines $s \in \mathbf{S u b}\left(L_{1} L_{2}\right)$.

Essence \subseteq Reason

Remark

Conflict reason determines $s \in \mathbf{S u b}\left(L_{1} L_{2}\right)$.

Theorem
If $c \in \operatorname{Sub}\left(L_{1} L_{2}\right)$ is disabling essence and $s \in \operatorname{Sub}\left(L_{1} L_{2}\right)$
disabling reason, then $\mathrm{c} \subseteq$ s.
The same holds if c is conflict essence and s conflict reason.

Initial Conflicts

- We now understand individual conflicting transformations
- We want overview of potential conflicts for rules

Initial Conflicts

- We now understand individual conflicting transformations
- We want overview of potential conflicts for rules
- Lambers, Born, et al. (2018) proposed initial conflicts (w.r.t extension)

Initial Conflicts

- Initial conflicts are subset of critical pairs, often much smaller!

Initial Conflicts

- Initial conflicts are subset of critical pairs, often much smaller!
- Initial conflicts capture all conflicts \Longleftrightarrow every transformation pair is extension of some initial transformation pair

Initial Conflicts

- Initial conflicts are subset of critical pairs, often much smaller!
- Initial conflicts capture all conflicts \Longleftrightarrow every transformation pair is extension of some initial transformation pair
- But: no categorical construction yet

Constructing Initial Transformation Pairs

Conflict essences and initial transformation pairs are closely related (in categories of set-valued functors)

Constructing Initial Transformation Pairs

Conflict essences and initial transformation pairs are closely related (in categories of set-valued functors)

Theorem

Given $H_{1} \stackrel{\rho_{1}, m_{1}}{\rightleftharpoons} G \stackrel{\rho_{2}, m_{2}}{\Longrightarrow} H_{2}$, the pushout of its conflict essence determines its initial transformation pair.

Constructing Initial Transformation Pairs

Conflict essences and initial transformation pairs are closely related (in categories of set-valued functors)

Theorem

Given $H_{1} \stackrel{\rho_{1}, m_{1}}{\rightleftharpoons} G \stackrel{\rho_{2}, m_{2}}{\Longrightarrow} H_{2}$, the pushout of its conflict essence determines its initial transformation pair.

Constructing Initial Transformation Pairs

Conflict essences and initial transformation pairs are closely related (in categories of set-valued functors)

Theorem

Given $H_{1} \stackrel{\rho_{1}, m_{1}}{\rightleftharpoons} G \stackrel{\rho_{2}, m_{2}}{\Longrightarrow} H_{2}$, the pushout of its conflict essence determines its initial transformation pair.

Constructing Initial Transformation Pairs

Conflict essences and initial transformation pairs are closely related (in categories of set-valued functors)

Theorem

Given $H_{1} \stackrel{\rho_{1}, m_{1}}{\rightleftharpoons} G \stackrel{\rho_{2}, m_{2}}{\Longrightarrow} H_{2}$, the pushout of its conflict essence determines its initial transformation pair.

Constructing Initial Transformation Pairs

Conflict essences and initial transformation pairs are closely related (in categories of set-valued functors)

Theorem

Given $H_{1} \stackrel{\rho_{1}, m_{1}}{\rightleftharpoons} \mathrm{G} \stackrel{\rho_{2}, m_{2}}{\rightleftharpoons} H_{2}$, the pushout of its conflict essence determines its initial transformation pair.

Overview

Available for: -_Adhesive Categories --- Set ${ }^{\mathbb{S}} \quad \operatorname{Graph}_{T}$

Overview

Available for: -_Adhesive Categories --- Set ${ }^{\mathbb{S}} \quad$........ Graph_{T}

Overview

Available for: _-Adhesive Categories --- Set ${ }^{\S}$........ Graph G $_{T}$

Conclusions

- Essential condition allowed powerful characterization for root causes of conflicts
- Lots of future work!
- Constraints and application conditions
- Compare with notions of granularity (Born et al. 2017)
- Attributed graphs and other adhesive categories
- Sesqui-Pushout and AGREE

Thank you! Questions?

References I

目 Born，Kristopher et al．（2017）．＂Granularity of Conflicts and Dependencies in Graph Transformation Systems＂．In：ICGT． Vol．10373．LNCS．Springer，pp．125－141．DOI： 10．1007／978－3－319－61470－0＿8．URL： https：／／doi．org／10．1007／978－3－319－61470－0＿8．
嗇 Corradini，Andrea et al．（2018）．＂On the Essence of Parallel Independence for the Double－Pushout and Sesqui－Pushout Approaches＂．In：Graph Transformation，Specifications，and Nets．Vol．10800．LNCS．Springer，pp．1－18．DOI： 10．1007／978－3－319－75396－6＿1．URL： https：／／doi．org／10．1007／978－3－319－75396－6＿1．
國 Lack，Stephen and Pawel Sobocinski（2005）．＂Adhesive and quasiadhesive categories＂．In：ITA 39．3，pp．511－545．DOI： 10．1051／ita：2005028．URL：
https：／／doi．org／10．1051／ita：2005028．

References II

圊 Lambers, Leen, Kristopher Born, et al. (2018). "Initial Conflicts and Dependencies: Critical Pairs Revisited". In: Graph Transformation, Specifications, and Nets. Vol. 10800. LNCS. Springer, pp. 105-123. DOI: 10.1007/978-3-319-75396-6_6. URL: https://doi.org/10.1007/978-3-319-75396-6_6.
E- Lambers, Leen, Hartmut Ehrig, and Fernando Orejas (2008). "Efficient Conflict Detection in Graph Transformation Systems by Essential Critical Pairs". In: ENTCS 211, pp. 17-26. DOI: 10.1016/j.entcs.2008.04.026. URL: https://doi.org/10.1016/j.entcs.2008.04.026.

Notes

